Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

The main problems and prevention measures of mine ecological restoration

来源: | 作者:佚名 | 发布时间 :2023-12-27 | 412 次浏览: | Share:

The old account of mine ecological restoration is fixed, according to the unified arrangement of the Ministry of Natural Resources, it is planned to be completed during the "14th Five-Year Plan" period, and the supervision and management of subsequent production mines is the key. If you want to make production mines do not owe new debts, the implementation of the concept of mining while repairing is the key.

In 2013, the author proposed the concept, connotation, basic principle, technical classification and key technologies of "reclamation while mining" in Jinggong Coal Mine [8-9]. Professor Y. P. Chugh, former director of the Central and Western Branch of the National Mining Land Reclamation Research Center of the United States and Professor of Southern Illinois University, also systematically introduced the results in the paper "Mining and recovery Technology of coal subsidence in China" in 2017, that "in the reclamation of coal subsidence area, mining and recovery technology is an advanced technology, which is in a leading position in the world". It is also named CMR-UM(Concurrent Mining and Reclamation for Underground Mining) technology [10]. In 2020, in the article "On the ecological Environment of Coal Mine Area" [11], the author further improved the concept, principle and technical system of the integration of coal mine mining and restoration, and redefined the concept of "mining and restoration" of coal mine ecological environment as follows: In view of the ecological and environmental damage caused by coal mining process, closely combined with the mining process, a variety of measures are taken simultaneously to reduce the ecological and environmental damage and control simultaneously, that is, repair while mining, so that it can be used and coordinated with the local ecosystem. The ecological environment of coal mine area "recovery while mining" is based on the concept of "source and process control", rather than the concept of "end management", which is characterized by synchronous management in the mining process. The "recovery" in the concept of "recovery while mining" includes both the narrow "reclamation" and the concept of "restoration". Its core purpose is to timely restore and control the damaged ecological environment, alleviate the contradiction between the exploitation and utilization of mineral resources and environmental protection, and ensure the development of mining activities in the direction of sustainable, circular and green. Relevant studies have shown [9] that using the mining and recovery technology to control the subsidence area of coal mining can restore 10% ~ 40% more land. In the future, the mining and recovery technology of Jinggong coal mine will seek a breakthrough in reclamation time, reclamation elevation and reclamation technology in practice. In the aspect of open pit mining, it is emphasized that the integration process of mining, drainage and complex must be implemented, internal drainage as early as possible, boundary management, and reducing the area of external drainage and excessive mining pit.

1. Slope management measures

The main work of slope treatment is to stabilize the slope. The task of this process is to remove dangerous rocks, reduce the slope and cut the slope, form the horizontal step of the cliff without steps as far as possible, and reduce the slope slope below the safety Angle to eliminate the hidden danger of collapse. After that, the slope that has been treated will be greened to further maintain its stability.

2. Tailings treatment measures

The tailings which occupy a large amount of land are redeveloped to increase the comprehensive utilization rate of tailings; The development of tailings with large consumption, less investment and sales to achieve the resource utilization and commercialization of scale management and multi-variety development makes it a waste into treasure and truly becomes a part of economic commodities. It is also necessary to treat the waste water in the tailings dam to meet the national standard, and realize all reuse and zero discharge of flotation waste water after moderate purification. For the mine with untreated goaf, abandoned roadway and chamber, it is an effective way to discharge tailings from underground goaf.

3. Soil base improvement

The key to ecological damage caused by mining is land degradation, that is, the change of soil factors, that is, the deterioration of physical and chemical properties of the soil in the abandoned land, the loss of nutrients and the increase of toxic and harmful substances in the soil. Therefore, soil improvement is one of the most important links in the ecological restoration of mine abandoned land. Measures that can be taken include :(1) off-site soil extraction measures: on the premise of not destroying the soil in the off-site, take an appropriate amount of soil, move it to the severely damaged part of the mine, plant plants on the soil, and repair the damaged soil through the absorption, volatilization, root filtration, degradation, stability and other functions of the plants. (2) Waste land transformation measures Before the topsoil transformation, try to inject mud to wrap the waste residue, and then lay a layer of clay compacted to create an artificial water barrier, reduce the infiltration of surface water, prevent the release of highly toxic elements in the waste residue. (3) Soil fertilizer improvement measures: effective substances are added to improve the physical and chemical properties of the soil, thereby shortening the vegetation succession process and speeding up the ecological reconstruction of the mine wasteland.

  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module
  • GE IS410STCIS2A IS400STCIS2AFF Industrial Control Module
  • GE DS200DCFBG2BNC DS200DCFBG1BNC DC Feedback Board
  • GE VME5565 VMIVME-5565-11000 332-015565-110000 P Reflective Memory
  • GE VMIVME-7807 VMIVMME-01787-414001 350-00010078007-414001 D module
  • GE IS220PDOAH1A 336A4940CSP2 Discrete Output Module
  • GE VMIVME-4150 Analog Output Module
  • GE WESDAC D20 PS Industrial Power Module
  • GE 369B1860G0031 servo drive module
  • GE 369B1859G0021 Input/Output Module
  • GE 208D9845P0008 Motor Management Relay
  • GE IS420UCSCH1A-F.V0.1-A Independent Turbine Controller
  • GE D20EME10BASE-T 820-0474 Ethernet Interface Module
  • GE DS200DCFBG2BNC MRP445970 DC Feedback Board
  • GE IC800SSI228RD2-EE servo motor controller
  • GE IS200JPDMG1ACC S1AT005 Digital Input/Output (I/O) Module
  • GE IS200TSVCH1AED servo input/output terminal board
  • GE IS200TTURH1CCC S1DF00Z Terminal Turbine Plate
  • GE IS200TSVCH1ADC S1CX01H servo input-output board
  • GE IS200TRPGH1BDD S1C5029 Trip Solenoid Valve Control Board
  • GE IS220YAICS1A L Analog Input/Output Module
  • GE UCSC H1 IS420UCSCH1A-F-VO.1-A Controller Module
  • GE UCSC H1 IS420UCSCH1A-B Communication Processing Module
  • GE IC697VDD100 Digital Input Module
  • GE V7768-320000 3509301007768-320000A0 Controller Module
  • GE IS410TRLYS1B Relay Output Module
  • GE IS415UCVGH1A V7666-111000 VME Control Card
  • GE IC800SSI216RD2-CE servo motor controller
  • GE VMIVME-5565-010000 332-01565-010000P Reflective Memory
  • GE IC695ALG508-AA Analog Input Module
  • GE IC660EPM100J Power Monitoring and Control Module
  • GE RS-FS-9001 362A1052P004 Redundant Fan System Module
  • GE IS220UCSAH1AK independent processor module
  • GE 369-HI-0-M-0-0-0-E Motor Management Relay
  • GE CIFX50-C0 interface board
  • GE SR469-P5-H-A20-T Motor Management Relay
  • GE WES5120 2340-21005 power module
  • GE WES5120 2340-21003 Control Module
  • GE D20MIC10BASE-T 820-0756 Ethernet Module
  • GE WES13-3 5167-001-0210 Mechanical Relay Output Module
  • GE WES13-3 2508-21001 Control Board Module
  • GE D20ME 526-2005-216943 Input/Output Module