Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Research progress on the principle and industrial application of hydrogen metallurgy

来源: | 作者:佚名 | 发布时间 :2023-12-29 | 1150 次浏览: | Share:

Hydrogen energy is regarded as the most promising clean energy in the 21st century and will play an important role in the future energy structure reform. Around the goal of achieving zero greenhouse gas emissions, many countries have promoted the utilization of hydrogen energy as a national strategy, and hydrogen technology research and development has become a hot spot. Hydrogen metallurgy is in the field of metallurgy with hydrogen instead of carbon reduction, hydrogen metallurgical reduction process and carbon reduction ratio has different characteristics, in the application of hydrogen metallurgy, iron ore direct reduction and blast furnace coal injection technology in the application of hydrogen energy has made progress. Although there have been many studies on hydrogen reduction of iron oxides, it is still unable to give an exact and reasonable explanation for some reaction behaviors, and it needs in-depth systematic analysis, research and summary to provide theoretical support for the application of hydrogen metallurgy. Combining with the technical accumulation of direct reduction and hydrogen reduction utilization in blast furnace process, the rational application of hydrogen metallurgy principles is emphasized from the aspects of hydrogen metallurgy thermodynamics, kinetics and engineering, hoping to explore the methods and paths to further improve the reduction capacity, efficiency, rate and industrial application of hydrogen metallurgy.

1 Basic research of hydrogen metallurgy

According to the basic theory of metallurgical reaction process, the development of hydrogen metallurgy technology must be designed according to meet the thermodynamic, kinetic and engineering principles of hydrogen metallurgy. Thermodynamics determines the direction, equilibrium conditions and limits of metallurgical reaction processes, kinetics discusses the rate, mechanism and limiting links of metallurgical processes, and engineering studies the macroscopic transfer law, unit operation and reactor characteristics of metallurgical processes. The three are organically combined to develop the maximum output conditions and parameters that can be achieved by hydrogen metallurgy process, find out the method to control and improve the reaction rate efficiency, improve the system problems existing in the operation process, and achieve the purpose of engineering popularization and application.

1.1 Put forward the concept of hydrogen metallurgy

The definition of hydrogen metallurgy is based on the concept of carbon metallurgy. Carbon metallurgy is the representative development mode of iron and steel industry, and the basic smelting formula is Fe2O3+3CO=2Fe+3CO2; The reducing agent is carbon, and the product is carbon dioxide. The basic reaction formula of hydrogen metallurgy: Fe2O3+3H2=2Fe+3H2O; The reducing agent is hydrogen, the end product is water, and the carbon dioxide emissions are zero. Carbon has always been the most important reducing agent in the steel industry, and it also causes a large amount of carbon dioxide emissions [1]. Non-carbon metallurgy is a metallurgical process that does not use carbon-containing substances as fuels and does not use carbon-containing media as reducing agents. Hydrogen is an excellent reducing agent and clean fuel. Research on hydrogen metallurgy technology, which replaces carbon with hydrogen as reducing agent and energy source, can change the environmental status of the iron and steel industry and is the most favorable choice for the development of low-carbon economy, which will bring hope for the sustainable development of the metallurgical industry [2].

1.2 Hydrogen metallurgy thermodynamics

According to the Fe-O-H system equilibrium diagram, below the critical temperature (about 570℃), the order of Fe2O3 reduction by H2 is Fe2O3-Fe3O4-Fe. Above the critical temperature, the order of reduction of Fe2O3 by H2 is Fe2O3-Fe3O4-Feo-Fe. The thermodynamics of hydrogen reduction in the reaction process includes two process routes: low temperature reduction and high temperature melting reduction [3]. In the process of hydrogen direct reduction of iron ore at low temperature, the raw material needs to be preheated due to heat absorption, and the multi-stage fluidized bed is often used for reduction to make up for the shortcomings of low temperature drop and low gas utilization rate. The high temperature molten hydrogen reduction process of iron ore is to inject hydrogen or hydrogen-rich gas into the lower part of the molten reduction furnace, by controlling the carbon combustion rate, and using hydrogen to replace part of carbon as a reducing agent, reduce the heat load required for carbon reduction, and achieve the purpose of accelerating the reduction speed and reducing carbon consumption.

(1) Low temperature reduction reaction includes:

FeO(s)+H2(g)=Fe(s)+H2O(g)

ΔG0=23430-16.16T (1)

FeO(s)+CO(g)=Fe(s)+CO2(g)

ΔG0=-17883+21.08T (2)

FeO(s)+C=Fe(s)+CO(g)

ΔG0=147904-150.22T (3)

(2) high-temperature reduction reaction includes:

(FeO)+CO(s)=[Fe]+CO2(g)

ΔG0=-35421+32.47T (4)

(FeO)+H2(g)=[Fe]+H2O(g)

ΔG0=5892-4.77T (5)

(FeO)+C=[Fe]+CO(g)

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card