Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

The positioning and development path of natural gas power generation in the energy transition period

来源: | 作者:佚名 | 发布时间 :2024-01-02 | 298 次浏览: | Share:

By the end of 2019, the installed capacity of full-caliber power generation in China was 2010.06 million kW, of which 90.24 million kW was gas power, accounting for about 4.5%[5]. In 2019, the apparent consumption of natural gas in China was 306.7 billion m3, of which 55.39 billion m3 was used for power generation, accounting for about 18.1%[4]. In the same year, natural gas power generation in the United States, the United Kingdom and Japan accounted for 38.63%, 40.1% and 35.0% of the total power generation respectively, and the gas consumption in power generation accounted for 36%, 31% and 69% of the natural gas consumption structure, respectively [3].

In 2019, China continued to maintain its position as the world's largest consumer and producer of renewable energy, with total renewable energy consumption equivalent to 2.2 times that of the United States (second in the world) and 3.2 times that of Brazil (third in the world). In 2019, China's consumption of renewable energy (water-based electricity) reduced CO2 emissions by 1.65 billion tons, equivalent to 16.5% of China's total CO2 emissions in that year [3]. Although China's renewable energy production scale ranks first in the world, the phenomenon of abandoning wind and light is still relatively serious. In 2019, the national abandoned wind and abandoned light power amounted to 16.9 billion kW∙h and 4.6 billion kW∙h respectively, which is equivalent to the annual power generation capacity of 4.5 million kW coal power plants, and the cost of coal burning is about 5 billion yuan and 6 million tons of CO2 emissions [6-7]. Overall, the flexibility of the power system in China varies, but it is difficult to meet the demand for a high proportion of renewable energy generation. In China, the proportion of flexible power supply such as pumped storage and gas power generation is only 6%, and the adjustment capacity of the power system is seriously insufficient. The "Three North" region with rich wind power and photovoltaic power generation has lower power scheduling flexibility, with the proportion of coal power installed capacity exceeding 70% and the proportion of flexible power supply accounting for less than 4%. The proportion of flexible power supply in countries with a high proportion of renewable energy is relatively high, and the proportion of flexible power supply in Spain, Germany and the United States (the proportion of renewable energy in primary energy consumption is 17.0%, 17.5% and 8.6%, respectively) accounted for 31%, 19% and 47% of the total installed capacity, respectively. Natural gas power generation is an important part of flexible power regulation.

With the increasing number and proportion of renewable energy such as photovoltaic and wind power into the power grid, the volatility and intermittency of renewable energy generation will also expand their impact exponentially, which will bring greater challenges to the safe and stable operation of the power system. The power grid needs a larger scale of fast response speed, affordable power generation cost, sustainable power supply to provide peak regulation and frequency modulation services. The system demand and supply are changing at any time, and the speed of change is different, and the power supply with different response speed is needed to supplement. Natural gas power generation has the advantages of flexible operation, short start-stop time, fast climbing rate and excellent adjustment performance. Compared with coal-fired power generation, pumped storage and battery energy storage, natural gas power generation is the most optimized peaking power supply with response characteristics, power generation cost and power supply continuity. The development of natural gas power generation with renewable energy will be the best way for the country's future energy transformation.

From high carbon energy to low carbon energy, from low carbon energy to fully renewable energy, this is the world's energy transition and development trend. We should follow this trend and shorten the process as much as possible, but we should respect the objective laws of this process and should not try to move from high carbon energy to low carbon energy to fully renewable energy in one step.

2. Gas-fired power generation has obvious advantages over coal-fired power generation

Compared with coal-fired power generation, gas-fired power generation is not only lower than coal-fired power generation in conventional pollutant emissions, but also better than coal-fired power generation in carbon emissions, peak load performance, investment, land area, water consumption and other aspects.

Gas power generation has a significant reduction in pollutant emissions compared with coal power generation

After years of strong investment and development, the "ultra-low emission" transformation of coal-fired power generation has significantly reduced the pollutant emissions of coal-fired power plants, and has made undeniable contributions to improving China's air quality. However, it should be clearly recognized that the "ultra-low emission" transformation of coal-fired power plants can barely match the NOx emission of gas-fired power plants. Such as SO2, CO2, soot, solid waste, heavy metals and other pollutants emissions are higher or much higher than gas power generation.

  • ABB PU517 Controller Automation System
  • ABB PS130/6-75-P Industrial Control Module
  • ABB 3BSE008062R1 PM633 Processor Module
  • ABB L110-24-1 Industrial Control Module
  • ABB IMDSO14 Digital Slave Output Module
  • ABB DSU10 Control Module
  • ABB DSQC627 3HAC020466-001 Advanced Power Supply Module
  • ABB DSQC354 Industrial I/O Module
  • ABB DSQC352 High Performance Input/Output Module
  • ABB 37911-4-0338125 Control Module
  • ABB DSPC172 CPU Module
  • ABB DSBB175 Industrial PLC Expansion Module
  • ABB CR-M4LS Industrial Control Module
  • ABB CI626A 3BSE005029R1 Communication Interface Module
  • ABB BB510 (DC5256) Digital Control Module
  • ABB 61615-0-1200000 High-Precision Industrial Controller
  • ABB 3HNE 00313-1 TILLV.0317 Machine No. 64-25653
  • ABB 3HNA000512-001 Control Module
  • ABB 3HAC025466-001 Industrial Control Module
  • ABB 3HAB8101-8/08Y Industrial Control Module
  • ABB 3BHB003689 Multifunction Controller Module
  • ABB PXBHE65 206-00212 power module
  • ZUNKU 6203-2RS Deep Groove Ball Bearing
  • ZUNKU 6201-2RS Deep Groove Ball Bearing
  • ZYCOM IGLACS01281 Control Module
  • Zygo 8010-0105-02 ZMI-501 Displacement Measurement Interferometer
  • Zygo 1115-801-346 laser head cable
  • ZYGO HSSDC2 TO HSSDC2 CABLE 1115-800-055
  • ZYGO HSSDC TO HSSDC2 CABLE 1115-800-056
  • ZYGO ZMI 4104C Measurement Electronics Board
  • ZYGO ZMI-2002 8020-0211 Measurement Board
  • ZYGO 7702 8070-0102-35 Laser Head
  • ZYGO ZMI 7702 8070-0102-01X Laser Head
  • ZYGO ZMI-4004 4-Axis VME64x Measurement Board
  • ZYGO PC200 CS1115-801-346 Laser interferometer cable
  • ZYGO 8010-0105-01 ZMI Power Supply
  • ZYGO ZMI-2002 8020-0211-1-J Laser system measurement board card
  • ABB 35AE92 control card
  • ABB 200900-004 I/O Adapter PLC Board
  • Siemens 6ES7193-4CA40-0AA0 ET 200S Electronic Module
  • Siemens 6AV2124-2DC01-0AX0 Comfort Panel
  • Siemens 6ES7421-7DH00-0AB0 Digital Input Module
  • Siemens 6ES7350-2AH01-0AE0 Counter Module
  • Siemens 6ES7231-0HC22-0XA0 Analog Input Expansion Module
  • Siemens ET200SP 6ES7193-6PA00-0AA0 server module
  • Siemens 6ES7193-4JA00-0AA0 Terminal Module
  • Siemens 6AG1204-2BB10-4AA3 Ethernet Switch
  • SIEMENS 6GK1105-2AA10 SIMATIC NET series optical switching module (OSM ITP62)
  • Schneider Modicon Quantum 140CPU65260 Unity Processor
  • Schneider Modicon Quantum 140ACO02000 Analog Output Module
  • Schneider Modicon Quantum 140CPS11420 power module
  • Allen-Bradley 1747-CP3 SLC ™ Series of programming cables
  • Kollmorgen S33GNNA-RNNM-00 - Brushless Servo Motor
  • Kollmorgen 6sm56-s3000-g-s3-1325 - Servo Motor
  • Kollmorgen AKM52K-CCCN2-00 - Servo Motor
  • Kollmorgen PSR3-230/75-21-202 - Power Supply
  • Kollmorgen akm24d-anc2r-00 - Servo Motor
  • Kollmorgen AKM22E-ANCNR-00 - Servo Motor
  • Kollmorgen S60300-550 - Servo Drive
  • Kollmorgen B-204-B-21 - Servomotor
  • Kollmorgen AKM21E-BNBN1-00 - Servo Motor
  • Kollmorgen TT2953-1010-B - DC Servo Motor
  • Kollmorgen pa8500 - Servo Power Supply
  • Kollmorgen BDS4A-210J-0001-207C2 - Servo Drive
  • Kollmorgen TTRB1-4234-3064-AA - DC Servo Motor
  • Kollmorgen MH-827-A-43 - Servo Motor
  • Kollmorgen AKM24D-ACBNR-OO - Servo Motor
  • Kollmorgen 00-01207-002 - Servo Disk DC Motor
  • Kollmorgen AKM21C-ANBNAB-00 - Servo Motor
  • Kollmorgen PSR3-208/50-01-003 - Power Supply
  • Kollmorgen 6SM56-S3000 - Servo Motor
  • Kollmorgen DBL3H00130-B3M-000-S40 - Servo Motor
  • Kollmorgen 6SN37L-4000 - Servo Motor
  • Kollmorgen AKM65K-ACCNR-00 - Servo motor
  • Kollmorgen 6SM56-L3000-G - Servo Motor
  • Kollmorgen AKMH43H-CCCNRE5K - Servo Motor
  • Kollmorgen PSR4/52858300 - Power Supply
  • Kollmorgen KBM-79H03-E03 - Direct Drive Rotary Motor
  • Kollmorgen AKM33E-ANCNDA00 - Servo Motor
  • Kollmorgen U9M4/9FA4T/M23 - ServoDisc DC Motor
  • Kollmorgen AKM13C-ANCNR-00 - Servo Motor
  • Kollmorgen AKM43L-ACD2CA00 - Servo Motor
  • Kollmorgen AKM54K-CCCN2-00 - Servo Motor
  • Kollmorgen M-605-B-B1-B3 - Servo Motor
  • Kollmorgen AKD-P00606-NBAN-0000 - Rotary Drive
  • Kollmorgen 6SM-37M-6.000 - Servo Motor
  • Kollmorgen A.F.031.5 - Sercos Interface Board
  • Kollmorgen 918974 5054 - Servo PWM
  • Kollmorgen U12M4 - ServoDisc DC Motor
  • Kollmorgen AKD-B00606-NBAN-0000 - Servo Drive
  • Kollmorgen MV65WKS-CE310/22PB - Servo Drive
  • Kollmorgen 65WKS-CE310/22PB - Servo Drive
  • Kollmorgen EM10-27 - Module
  • Kollmorgen S64001 - Servo Drive
  • Kollmorgen CR03200-000000 - Servo Drive
  • Kollmorgen 6SM57M-3000+G - Servo Motor
  • Kollmorgen BDS4 - Servo Drive
  • Kollmorgen AKD-P00306-NBEC-000 - Servo Drive
  • Kollmorgen AKD-B01206-NBAN-0000 - Servo Drive
  • Kollmorgen STP-57D301 - Stepper Motor
  • Kollmorgen 6SM37L-4.000 - Servo Motor
  • Kollmorgen 44-10193-001 - Circuit Board
  • Kollmorgen PRDR9SP24SHA-12 - Board
  • Kollmorgen PRD-AMPE25EA-00 - Servo Drive
  • Kollmorgen DBL3N00130-0R2-000-S40 - Servo Motor
  • Kollmorgen S406BA-SE - Servo Drive
  • Kollmorgen AKD-P00607-NBEI-0000 - Servo Drive
  • Kollmorgen AKD-P01207-NBEC-0000 - Servo Drive
  • Kollmorgen CR03550 - Servo Drive
  • Kollmorgen VSA24-0012/1804J-20-042E - Servo Drive
  • Kollmorgen N2-AKM23D-B2C-10L-5B-4-MF1-FT1E-C0 - Actuator
  • Kollmorgen 04S-M60/12-PB - Servo Drive
  • Kollmorgen H33NLHP-LNW-NS50 - Stepper Motor
  • Kollmorgen A-78771 - Interlock Board
  • Kollmorgen AKM43E-SSSSS-06 - Servo Motor
  • Kollmorgen AKD-P00607-NBEC-0000 - Servo Drive
  • Kollmorgen E21NCHT-LNN-NS-00 - Stepper Motor
  • Kollmorgen cr10704 - Servo Drive
  • Kollmorgen d101a-93-1215-001 - Motor
  • Kollmorgen BDS4A-203J-0001-EB202B21P - Servo Drive
  • Kollmorgen MCSS23-6432-002 - Connector
  • Kollmorgen AKD-P01207-NACC-D065 - Servo Drive
  • Kollmorgen CK-S200-IP-AC-TB - I/O Adapter and Connector
  • Kollmorgen CR10260 - Servo Drive
  • Kollmorgen EC3-AKM42G-C2R-70-04A-200-MP2-FC2-C0 - Actuator
  • Kollmorgen BDS5A-206-01010-205B2-030 - Servo Drive
  • Kollmorgen s2350-vts - Servo Drive
  • Kollmorgen AKM24D-ANC2DB-00 - Servo Motor