Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

The working structure of nuclear power plant and its working principle

来源: | 作者:佚名 | 发布时间 :2024-01-03 | 172 次浏览: | Share:

First, atoms and nuclear energy

Nuclear energy is the energy produced by the recombination and arrangement of atomic particles, also known as atomic energy. Nuclear energy is essentially a transfer of mass and energy... The main characteristic of nuclear energy is: high concentration of energy. The energy produced by the entire fission of 1t of uranium-235 is about equal to the energy released when 2.4 million tons of standard coal is burned.

Second, the working principle of nuclear power plants

Nuclear power plants currently in commercial operation use nuclear fission reactions to generate electricity.

Nuclear power plants are generally divided into two parts: nuclear islands that use nuclear fission to produce steam (including reactor units and primary circuit systems) and conventional islands that use steam to generate electricity (including turbo-generator systems). The fuel used in nuclear power plants is usually radioactive heavy metals: uranium and plutonium.

Now the most common civil nuclear power plants are mostly pressurized water reactor nuclear power plant, its working principle is: the nuclear fuel made of uranium in the reactor fission and release a lot of heat; Circulating cooling water at high pressure takes the heat out and generates steam inside the steam generator, which spins the generator and generates electricity.

3. Working equipment of nuclear power plant

The main pump: If the coolant in the reactor is compared to human blood, the main pump is the heart. Its function is to send coolant into the reactor and then through the steam generator to ensure that the heat generated by the fission reaction is transferred in time.

Pressurizer: Also known as pressure balancer, is used to control the pressure changes of the reactor system equipment. In normal operation, it plays the role of maintaining pressure; Provides overpressure protection in the event of an accident. The pressurizer is equipped with a heater and spray system, when the pressure in the reactor is too high, spray cold water to reduce the pressure; When the pressure in the reactor is too low, the heater is automatically energized to heat the water to increase the pressure.

Steam generator: Its role is to pass the heat of the coolant through the reactor to the secondary circuit water, and make it into steam, and then into the cylinder of the turbine generator for work.

Containment: Containment is used to control and limit the spread of radioactive materials from the reactor to protect the public from radioactive materials. In the rare event of a loss of water in the primary reactor, the containment vessel is the last barrier to prevent the release of fission products into the surrounding area. The containment is generally a thick-walled prestressed concrete vessel lined with steel plates.

Steam turbine: The steam turbine generator used in nuclear power plant is much the same as that used in conventional thermal power station in structure, but the difference is that because the steam pressure and temperature are lower, the turbine volume of the same power unit is larger than that of conventional thermal power station.

Emergency cooling system: In order to cope with the extreme water loss accident caused by the rupture of the primary main pipeline of the nuclear power plant, modern nuclear power plants have emergency cooling systems. It consists of an injection system and a containment spray system. Once the signal of an extreme water loss accident is received, the safety injection system injects high-pressure boron-containing water into the reactor, and the spray system sprays water and chemicals into the containment vessel. It can mitigate the consequences of accidents and limit the spread of accidents.

Nuclear reactors

The interior of a nuclear power plant is usually composed of a primary circuit system and a secondary circuit system. The reactor is the core of a nuclear power plant. The thermal energy released during reactor operation is carried out by the coolant in the primary system to produce steam. Therefore, the entire primary system is called the "nuclear steam supply system", which is equivalent to the boiler system of a thermal power plant. To ensure safety, the entire primary circuit system is housed in a closed building called a containment, so that safety will not be affected during normal operation or in the event of an accident. The second circuit system of generating power by steam driven turbine generator set is basically the same as that of steam turbine generator system in thermal power plant.

First, the concept of hot reactor

After the neutron into the original nucleus of uranium-235, the nucleus becomes unstable and will split into two new nuclei of smaller mass, which is the nuclear fission reaction, and the energy released is called fission energy; As well as producing a huge amount of energy, it also emits two or three neutrons and other rays. These neutrons then penetrate into other uranium-235 nuclei, causing new nuclear fission, which in turn produces new neutrons and fission energy, and so on, forming a chain reaction. Reactors built using the principle of nuclear reaction need to slow down the neutrons released during fission, and then cause new nuclear fission, because the speed of the neutron and the thermal motion of the molecule reach a balance state, this neutron is called thermal neutron. A reactor in which the fission is mainly caused by thermal neutrons is called a thermal neutron reactor (referred to as a hot reactor). Thermal reactor, which uses a moderator to slow down fast neutrons.

  • ABB 3BSE008062R1 PM633 Processor Module
  • ABB L110-24-1 Industrial Control Module
  • ABB IMDSO14 Digital Slave Output Module
  • ABB DSU10 Control Module
  • ABB DSQC627 3HAC020466-001 Advanced Power Supply Module
  • ABB DSQC354 Industrial I/O Module
  • ABB DSQC352 High Performance Input/Output Module
  • ABB 37911-4-0338125 Control Module
  • ABB DSPC172 CPU Module
  • ABB DSBB175 Industrial PLC Expansion Module
  • ABB CR-M4LS Industrial Control Module
  • ABB CI626A 3BSE005029R1 Communication Interface Module
  • ABB BB510 (DC5256) Digital Control Module
  • ABB 61615-0-1200000 High-Precision Industrial Controller
  • ABB 3HNE 00313-1 TILLV.0317 Machine No. 64-25653
  • ABB 3HNA000512-001 Control Module
  • ABB 3HAC025466-001 Industrial Control Module
  • ABB 3HAB8101-8/08Y Industrial Control Module
  • ABB 3BHB003689 Multifunction Controller Module
  • ABB PXBHE65 206-00212 power module
  • ZUNKU 6203-2RS Deep Groove Ball Bearing
  • ZUNKU 6201-2RS Deep Groove Ball Bearing
  • ZYCOM IGLACS01281 Control Module
  • Zygo 8010-0105-02 ZMI-501 Displacement Measurement Interferometer
  • Zygo 1115-801-346 laser head cable
  • ZYGO HSSDC2 TO HSSDC2 CABLE 1115-800-055
  • ZYGO HSSDC TO HSSDC2 CABLE 1115-800-056
  • ZYGO ZMI 4104C Measurement Electronics Board
  • ZYGO ZMI-2002 8020-0211 Measurement Board
  • ZYGO 7702 8070-0102-35 Laser Head
  • ZYGO ZMI 7702 8070-0102-01X Laser Head
  • ZYGO ZMI-4004 4-Axis VME64x Measurement Board
  • ZYGO PC200 CS1115-801-346 Laser interferometer cable
  • ZYGO 8010-0105-01 ZMI Power Supply
  • ZYGO ZMI-2002 8020-0211-1-J Laser system measurement board card
  • ABB 35AE92 control card
  • ABB 200900-004 I/O Adapter PLC Board
  • Siemens 6ES7193-4CA40-0AA0 ET 200S Electronic Module
  • Siemens 6AV2124-2DC01-0AX0 Comfort Panel
  • Siemens 6ES7421-7DH00-0AB0 Digital Input Module
  • Siemens 6ES7350-2AH01-0AE0 Counter Module
  • Siemens 6ES7231-0HC22-0XA0 Analog Input Expansion Module
  • Siemens ET200SP 6ES7193-6PA00-0AA0 server module
  • Siemens 6ES7193-4JA00-0AA0 Terminal Module
  • Siemens 6AG1204-2BB10-4AA3 Ethernet Switch
  • SIEMENS 6GK1105-2AA10 SIMATIC NET series optical switching module (OSM ITP62)
  • Schneider Modicon Quantum 140CPU65260 Unity Processor
  • Schneider Modicon Quantum 140ACO02000 Analog Output Module
  • Schneider Modicon Quantum 140CPS11420 power module
  • Allen-Bradley 1747-CP3 SLC ™ Series of programming cables
  • Kollmorgen S33GNNA-RNNM-00 - Brushless Servo Motor
  • Kollmorgen 6sm56-s3000-g-s3-1325 - Servo Motor
  • Kollmorgen AKM52K-CCCN2-00 - Servo Motor
  • Kollmorgen PSR3-230/75-21-202 - Power Supply
  • Kollmorgen akm24d-anc2r-00 - Servo Motor
  • Kollmorgen AKM22E-ANCNR-00 - Servo Motor
  • Kollmorgen S60300-550 - Servo Drive
  • Kollmorgen B-204-B-21 - Servomotor
  • Kollmorgen AKM21E-BNBN1-00 - Servo Motor
  • Kollmorgen TT2953-1010-B - DC Servo Motor
  • Kollmorgen pa8500 - Servo Power Supply
  • Kollmorgen BDS4A-210J-0001-207C2 - Servo Drive
  • Kollmorgen TTRB1-4234-3064-AA - DC Servo Motor
  • Kollmorgen MH-827-A-43 - Servo Motor
  • Kollmorgen AKM24D-ACBNR-OO - Servo Motor
  • Kollmorgen 00-01207-002 - Servo Disk DC Motor
  • Kollmorgen AKM21C-ANBNAB-00 - Servo Motor
  • Kollmorgen PSR3-208/50-01-003 - Power Supply
  • Kollmorgen 6SM56-S3000 - Servo Motor
  • Kollmorgen DBL3H00130-B3M-000-S40 - Servo Motor
  • Kollmorgen 6SN37L-4000 - Servo Motor
  • Kollmorgen AKM65K-ACCNR-00 - Servo motor
  • Kollmorgen 6SM56-L3000-G - Servo Motor
  • Kollmorgen AKMH43H-CCCNRE5K - Servo Motor
  • Kollmorgen PSR4/52858300 - Power Supply
  • Kollmorgen KBM-79H03-E03 - Direct Drive Rotary Motor
  • Kollmorgen AKM33E-ANCNDA00 - Servo Motor
  • Kollmorgen U9M4/9FA4T/M23 - ServoDisc DC Motor
  • Kollmorgen AKM13C-ANCNR-00 - Servo Motor
  • Kollmorgen AKM43L-ACD2CA00 - Servo Motor
  • Kollmorgen AKM54K-CCCN2-00 - Servo Motor
  • Kollmorgen M-605-B-B1-B3 - Servo Motor
  • Kollmorgen AKD-P00606-NBAN-0000 - Rotary Drive
  • Kollmorgen 6SM-37M-6.000 - Servo Motor
  • Kollmorgen A.F.031.5 - Sercos Interface Board
  • Kollmorgen 918974 5054 - Servo PWM
  • Kollmorgen U12M4 - ServoDisc DC Motor
  • Kollmorgen AKD-B00606-NBAN-0000 - Servo Drive
  • Kollmorgen MV65WKS-CE310/22PB - Servo Drive
  • Kollmorgen 65WKS-CE310/22PB - Servo Drive
  • Kollmorgen EM10-27 - Module
  • Kollmorgen S64001 - Servo Drive
  • Kollmorgen CR03200-000000 - Servo Drive
  • Kollmorgen 6SM57M-3000+G - Servo Motor
  • Kollmorgen BDS4 - Servo Drive
  • Kollmorgen AKD-P00306-NBEC-000 - Servo Drive
  • Kollmorgen AKD-B01206-NBAN-0000 - Servo Drive
  • Kollmorgen STP-57D301 - Stepper Motor
  • Kollmorgen 6SM37L-4.000 - Servo Motor
  • Kollmorgen 44-10193-001 - Circuit Board
  • Kollmorgen PRDR9SP24SHA-12 - Board
  • Kollmorgen PRD-AMPE25EA-00 - Servo Drive
  • Kollmorgen DBL3N00130-0R2-000-S40 - Servo Motor
  • Kollmorgen S406BA-SE - Servo Drive
  • Kollmorgen AKD-P00607-NBEI-0000 - Servo Drive
  • Kollmorgen AKD-P01207-NBEC-0000 - Servo Drive
  • Kollmorgen CR03550 - Servo Drive
  • Kollmorgen VSA24-0012/1804J-20-042E - Servo Drive
  • Kollmorgen N2-AKM23D-B2C-10L-5B-4-MF1-FT1E-C0 - Actuator
  • Kollmorgen 04S-M60/12-PB - Servo Drive
  • Kollmorgen H33NLHP-LNW-NS50 - Stepper Motor
  • Kollmorgen A-78771 - Interlock Board
  • Kollmorgen AKM43E-SSSSS-06 - Servo Motor
  • Kollmorgen AKD-P00607-NBEC-0000 - Servo Drive
  • Kollmorgen E21NCHT-LNN-NS-00 - Stepper Motor
  • Kollmorgen cr10704 - Servo Drive
  • Kollmorgen d101a-93-1215-001 - Motor
  • Kollmorgen BDS4A-203J-0001-EB202B21P - Servo Drive
  • Kollmorgen MCSS23-6432-002 - Connector
  • Kollmorgen AKD-P01207-NACC-D065 - Servo Drive
  • Kollmorgen CK-S200-IP-AC-TB - I/O Adapter and Connector
  • Kollmorgen CR10260 - Servo Drive
  • Kollmorgen EC3-AKM42G-C2R-70-04A-200-MP2-FC2-C0 - Actuator
  • Kollmorgen BDS5A-206-01010-205B2-030 - Servo Drive
  • Kollmorgen s2350-vts - Servo Drive
  • Kollmorgen AKM24D-ANC2DB-00 - Servo Motor
  • Kollmorgen E31NCHT-LNN-NS-01 - Stepper Motor
  • Kollmorgen PRD-0051AMPF-Y0 - Servo Board