Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Problems in the utilization of sewage resources

来源: | 作者:佚名 | 发布时间 :2024-01-08 | 498 次浏览: | Share:

The national level has attached great importance to water pollution control, sewage treatment technology has developed rapidly and achieved remarkable results, but the resource utilization of sewage is still in the preliminary stage, the development is not sufficient, and the utilization level is low. At present, the discharge of urban sewage is about 75 billion m³, and the amount of renewable water conservancy is less than 10 billion m³, which needs to be accelerated. Most coal chemical enterprises are built in water-scarce areas, and the resource utilization of industrial wastewater can minimize the shortage of water resources. At present, the main problems of sewage resource utilization are as follows:

1. Policies, regulations, management mechanisms and standard systems are not sound

At the national level, there are many laws and regulations on the policy of sewage resource utilization, but the connection of laws and regulations is not good, lack of coordination, and short board. The policies, planning, supervision and management of the relevant departments of the government lack coherence. There is a lack of coordination in sewage collection and recycling treatment, and some industrial wastewater is mixed into urban sewage systems, increasing the environmental risks of recycled water and sludge utilization. The problem is mainly reflected in the following aspects: First, the incentive mechanism and supervision system are not perfect, and the lack of reasonable charges and incentive mechanisms has led to the low enthusiasm of enterprises for regenerating water with thousands of ecological environment. Second, the lack of sewage resource utilization target determination mechanism, supervision and management system is not perfect, resulting in planning goals difficult to achieve. Third, the standard system is not perfect, the coverage of reclaimed water utilization water quality standard is not comprehensive, and the water quality classification standard is missing; The discharge standard of sewage treatment plant, water environment quality standard and water quality standard of reclaimed water ecological environment utilization lack coordination and coordination; Lack of sewage resource utilization benefit evaluation standards, ecological environmental risk management standards, technical standards, equipment standards and service and supervision standards.

2. The planning of reclaimed water utilization and the construction of facilities are not coordinated

The recycled water utilization plan lacks binding force, and the types of industrial projects introduced in the park often exceed the planning scope, affecting the normal operation of sewage treatment facilities. The positioning of industrial agglomeration area often changes with the situation of economic development, and the way out of "three wastes" is rarely considered from the perspective of the complementarity of circular economy and technological economy. Changes in the introduction of industrial projects have made it difficult for the centralized wastewater treatment facilities built according to the original plan to operate normally, and some even cannot operate normally. For the coal chemical industry and coal mine water problems, the more prominent is that the coupling degree is not enough, the distance is far, it belongs to thousands of different owner units, coordination is difficult, and the displacement and resource utilization are also difficult to match.

3. The theoretical research of sewage resource utilization is insufficient and the scientific and technological support is not strong

The research on the risk and control of sewage resource utilization is insufficient. The utilization of reclaimed water is a complex non-traditional water supply project. Compared with the standard discharge of sewage and traditional water supply, the risk factors, exposure pathways, exposure amounts and risk generation mechanisms need to be studied in a targeted and systematic way. There are some problems such as low efficiency of wastewater recycling treatment process, immature energy and resource conversion technology and lack of original technology.

4. The design of sewage treatment plant in industrial agglomeration area does not match the needs of enterprises in the park

The design and construction standard of sewage treatment plant in industrial agglomeration area can not meet the requirements of wastewater treatment in industrial park. In the construction of sewage treatment plants in many industrial agglomeration areas, the feasibility of industrial wastewater treatment and discharge up to standard is not demonstrated from a technical point of view, but the design idea of urban sewage treatment plant is adopted for construction, and the pollution control idea is rarely proposed from the characteristic pollutants of industrial wastewater, and the lack of pretreatment links and wastewater quality control means. Due to the lack of detailed provisions on toxic and harmful substances, especially organic poisons, in policies, regulations and related discharge indicators, and the lack of binding indicators on takeover conditions, many enterprises have blindly adopted various means, even adding water dilution, and pursued the "standard discharge" of wastewater indicators (especially COD). As a result, organic pollutants with biological toxicity, biological inhibition and difficult biodegradation in wastewater enter the park centralized sewage treatment plant without effective control. Some enterprises discharge wastewater with high biodegradability, which promotes the stable operation of the wastewater treatment plant in the industrial agglomeration area. However, in order to meet the unified take-over standards, biochemical pretreatment facilities have been built to remove useful components such as carbon sources, which is not conducive to the normal operation of the wastewater treatment plant in the park and the overall energy saving and emission reduction.

Countermeasures and suggestions for improving the level of sewage resource utilization

(1) Actively promote industrial recycling of waste water

(1) Industrial water should be prioritized to use urban reclaimed water. In water-scarce areas, industrial enterprises and parks should cooperate closely with urban reclaimed water production and operation units, plan and equip pipe network facilities, and use reclaimed water as the priority water source and the first water source for industrial water. Relatively dispersed coal mine water can be collected centrally, and if necessary, natural ditches can be used for temporary storage to avoid discharge into the river, resulting in waste.

(2) Vigorously promote the recycling of industrial wastewater. Promote the integration and optimization of water use systems within and between enterprises in industrial parks, and realize serial water use, differentiated water use, multi-use and recycling of water. We will promote the monitoring and evaluation of water quality and the construction of a water management system for industrial recycling of waste water. Comprehensive integration and demonstration of water recycling technology will be carried out in typical areas, and demonstration models will be created for the coordinated efforts of wastewater recycling technology, engineering and services, management, and policies.

2. Accelerate the ecological and environmental utilization of urban sewage

Areas with conditions can make full use of urban sewage in adjacent industrial areas. The quantity of urban sewage is large, the quality is stable, the utilization potential is huge, and the potential benefit is remarkable. In recent years, the construction of sewage treatment facilities in China has developed rapidly, and the treatment capacity and effluent quality have been continuously improved, laying a good foundation for the utilization of recycled water. Therefore, the Guiding Opinions require that all regions rationally lay out the infrastructure for the utilization of recycled water on the basis of existing sewage treatment plants; New urban areas in cities with severe water shortage should be adapted to local conditions, plan and layout the reclaimed water pipe network in advance, and carry out construction in an orderly manner. At present, the effluent quality of most urban sewage treatment plants in China is good, especially the main water quality indicators such as chemical oxygen demand, ammonia nitrogen and total phosphorus, which can fully meet the requirements of industrial water intake.

3. Strengthen scientific and technological support and improve the standard system

We will strengthen scientific and technological support for the utilization of sewage resources. Strengthen the basic research on the risk and control of sewage resource utilization, and develop the theory and method system of standard formulation of recycled water utilization; Research and development of integrated low-cost, high-performance waste water recycling and treatment technologies, processes and equipment. We will improve the standard system for the utilization of sewage resources. Research on statistical methods and systems of sewage resource utilization, evaluation methods and norms of sewage resource utilization benefits, and form a scientific and unified statistical system. We will accelerate the formulation of technical specifications and risk management standards for the ecological and environmental utilization of recycled water, and gradually formulate and revise standards for the classification and quality of sewage resource utilization, evaluation standards and supervision standards.

4. Accelerate the promotion of environmental pollution treatment model

Professional company management is the general direction. The third party treatment of environmental pollution has become a new model of pollution control, that is, from "who pollutes, who governs" to "who pollutes, who pays". According to the requirements of the Notice of the General Office of the Ministry of Ecology and Environment of the National Development and Reform Commission on In-depth Promotion of third-party Environmental Pollution Management of the Park (Environmental Information (2019) No. 785) document, the Park is encouraged to carry out third-party governance through the declaration of the provincial Development and Reform Commission, the ecological environment department, and the expert review of third-party institutions. We will guide the active participation of social capital and establish a new mechanism of payment based on performance, third-party governance, government supervision and social supervision. Innovate the governance model, standardize the treatment and disposal methods, enhance the processing capacity, and realize the continuous improvement of the environmental quality of the park; Innovative policy guidance, explore long-term supervision mechanisms for pollution control in the park, promote the "marketization, specialization, and industrialization" of third-party governance, improve the overall level of pollution control and pollutant emission control in the park, and form replicable and popularizable practices and successful experiences.

5. Perfect and reasonable price system

China has long regarded wastewater as "waste", but not as a resource, so China's current main sewage treatment industry, mainly capital input, no output, input funds, from the government and residents pay, wastewater as a pollutant directly discharged. Water shortage areas can add new investment, and the treated water quality can be upgraded from the standard discharge to the level of four or more categories, and the sewage can be used as a commodity or resource, with value. Perfect and reasonable pricing system, taking into account the interests of various parties on the basis of determining reasonable pricing, sewage as a resource or commodity, will greatly reduce the pressure of water shortage.

6. We will promote the trusteeship service model for comprehensive environmental governance

The "13th Five-Year Plan for Ecological Environmental Protection" (Guofa (2016) No. 65) proposed to "carry out pilot programs for comprehensive environmental management and trusteeship services in small towns and parks." In the "13th Five-Year Plan for the Development of National Strategic Emerging Industries" (Guofa (2016) No. 67), it is proposed to "carry out the pilot of third-party environmental pollution treatment and the pilot of trusteeship services for comprehensive environmental treatment". The "Guiding Opinions on Actively Playing the Role of Environmental Protection to Promote Supply-side Structural Reform" (Huanatmospheric (2016) No. 5) proposes that "conditional industrial parks are encouraged to hire third-party professional environmental protection service companies as" environmental stewards "to provide integrated environmental protection services and solutions such as monitoring, supervision, construction and operation of environmental protection facilities, and pollution control to the parks." On June 13, 2017, the National Development and Reform Commission issued the "Service Industry Innovation Development Outline (2017-2025)" (Development and Reform Plan (2017) No. 1116), proposing to "promote the trusteeship of comprehensive environmental management in industrial parks and small towns". In the same year, the Ministry of Ecology and Environment initiated a project to carry out the "Case Study on the trusteeship Service Model of Comprehensive Environmental Governance" to provide support for the research and development of relevant policies on the demonstration and promotion of the trusteeship service model of comprehensive environmental governance.


  • ABB HIEE300927R0101 UBC717AE101 High Voltage Inverter Board
  • ABB UFC721AE101 3BHB002916R0101 PC Board
  • ABB 5SHY4045L0003 3BHB021400 3BHE019719R0101 GVC736BE101 Diode and grid drive circuits
  • ABB 3BHE019719R0101 GVC736BE101 IGCT Module
  • ABB REM620A_F NAMBBABA33E5BNN1XF Protective Relay
  • ABB PPD113B03-26-100110 3BHE023584R2634 Power Distribution Module
  • ABB MB810 Module Mounting locations
  • ABB 3BHL000986P7000 LXN1604-6 POWER SUPPLY
  • ABB VBX01BA I/O Control Module
  • ABB AI03 AI module, 8-CH, 2-3-4 Wire RTDs
  • ABB 1TGE120010R1300 Industrial Control Module
  • ABB 216BM61b HESG448267R1021 Advanced Process Control Module
  • ABB BDD110 HNLP205879R1 Digital I/O Module
  • ABB IEMPU02 Power Supply Module
  • ABB G3FE HENF452697R1 High performance control module
  • ABB G3FD HENF452692R1 High-Performance Industrial Control Module
  • ABB B5EC HENF105077R1 Electronic Motor Protection Relay
  • ABB G3EFa HENF450295R2 Industrial Automation Module
  • ABB B5EEd HENF105082R4 Electronic Motor Protection Relay
  • ABB O3EId HENF452777R3 Digital Output Module
  • ABB NWX511a-2/R HESG112548R12 Industrial Automation Module
  • ABB E3ES Power communication module
  • ABB O3EX HENF315845R2 Industrial Control Module
  • ABB O3EHa HENF315087R2 Digital Output Module
  • ABB E3ED High-Performance Industrial Controller
  • ABB O3EGb HENF315118R2 Digital Output Module
  • ABB O3ED Digital Input Module
  • ABB O3ES HENF445789R1 Digital Input Module
  • ABB G3ESa HENF318736R1 control module
  • ABB 8025-235 Industrial Control Module
  • ABB 216NG61A HESG441633R1 HESG216875/K main control board
  • ABB SCYC51020 58052582G programmable Logic Controller
  • ABB RED670 Line differential protection
  • ABB PP825A 3BSE042240R3 Touch Screen Panel
  • ABB SCYC51020 58052582/G pulse trigger board
  • ALSTOM COP232.2 VME A32/D32.029.232 446 Controller Unit
  • ABB AO2000 LS25 Laser analyzers
  • ABB LM80 Laser level transmitter
  • ABB PM803F 3BDH000530R1 Base Unit 16 MB
  • ABB SD822 3BSC610038R1 Power Supply Device
  • ABB PCD235B1101 3BHE032025R1101 Industrial Control Module
  • ABB AZ20/112112221112E/STD Control Module
  • ABB UAD142A01 3BHE012551R0001 Industrial Control Module
  • ABB 5SHY35L4503 3BHB004693R0001 3BHB004692R0002 5SXE01-0127 main control board
  • ABB FET3251C0P184C0H2 High-Performance Power Module
  • ABB CAI04 Ability ™ Symphony ® Plus Hardware Selector
  • ABB R474A11XE HAFAABAAABE1BCA1XE output hybrid module
  • ABB REF542PLUS 1VCR007346 Compact Digital Bay Control
  • ABB REF542PLUS 1VCF752000 Feeder Terminal Panel
  • ABB PPD113B03-26-100100 3BHE023584R2625 output hybrid module
  • ABB 3BHE022293R0101 PCD232A Communication Interface Unit
  • ABB CI857K01 3BSE018144R1 Module Controller
  • ABB 3ASC25H216A DATX132 Industrial Controller
  • ABB LWN2660-6 High-Voltage Industrial Controller
  • ABB 1MRK00008-KB Control Module
  • ABB SC540 3BSE006096R1 Submodule Carrier
  • ABB REF615C_C HCFFAEAGANB2BAN1XC feeder protection and measurement and control device
  • ABB S-073N 3BHB009884R0021 multi-function servo driver
  • ABB SK827005 SK827100-AS 480V 60HZ coil
  • GE 029.381208 module
  • ABB REF615E_E HBFHAEAGNCA1BNN1XE Module
  • ABB TP830 3BSE018114R1 Baseplate Module
  • ABB TK803V018 3BSC950130R1 Cable Assembly
  • ABB DSRF197 3BSE019297R1 Controller Module
  • ABB DSAO120A 3BSE018293R1 Advanced Analog Output Board
  • ABB DSDP170 57160001-ADF Pulse Counting Module
  • ABB DSBC176 3BSE019216R1 Bus Extender Board
  • ABB DSDO115A 3BSE018298R1 Digital Output Module
  • ABB PM865K01 3BSE031151R1 Processor Unit HI
  • ABB 5SHY3545L0016 3BHB020720R0002 3BHE019719R0101 GVC736BE101 auxiliary DC power supply unit
  • ABB TP853 3BSE018126R1 Power Supply Module
  • ABB REM545AG228AAAA High Precision Control Module
  • ABB CI626A 3BSE005029R1 Communication Interface Module
  • ABB REM615C_D HCMJAEADAND2BNN1CD Motor protection and control
  • ABB TP857 3BSE030192R1 DCS System
  • ABB PP865A 3BSE042236R2 Touch Panel
  • ABB SCYC51020 58052582H Industrial Automation Control Module
  • ABB SCYC51090 58053899E Control Module
  • ABB CB801 3BSE042245R1 Profibus DP Slave Expansion Module
  • ABB 5SHY4045L0001 3BHB018162R0001 IGCT Module
  • ABB 5SHY6545L0001 AC10272001R0101 5SXE10-0181 High-Power IGCT Module
  • ABB RMU811 Module Termination Unit
  • ABB TVOC-2-240 1SFA664001R1001 Industrial Control Module
  • ABB LDSTA-01 63940143B Input/Output (I/O) Module
  • ABB GJR5252300R3101 07AC91H Analog Input/Output Module
  • ABB GJR5252300R3101 07AC91F Industrial Control Module
  • ABB TB711F 3BDH000365R0001 Industrial Control Module
  • ABB TU715F 3BDH000378R0001 I/O Terminal Unit (ITU)
  • ABB DC732F 3BDH000375R0001 Industrial Controller
  • ABB TTH300 Head-mount temperature transmitter
  • ABB UNS3670A-Z V2 HIEE205011R0002 Industrial Automation Module
  • ABB RC527 3BSE008154R1 Redundant System Control Module
  • ABB 5SHY5055L0002 3BHE019719R0101 GVC736BE101 Industrial Control Module
  • ABB PM866 3BSE050200R1 AC800M series PLC core controller
  • ABB UFC718AE01 HIEE300936R0001 Main Circuit Interface Board
  • ABB DSAI130A 3BSE018292R1 Industrial I/O Module Controller
  • ABB 07KT98 GJR5253100R0278 Advanced Controller Module
  • ABB PFTL101B-5.0kN 3BSE004191R1 Power Conversion Module
  • ABB 5SHX1445H0002 3BHL000387P0101 IGCT Module
  • ABB 3HNM07686-1 3HNM07485-1/07 Controller Module
  • ABB DSCS131 57310001-LM DS Communication Board
  • ABB DSBC172 57310001-KD BUS REPEATER
  • ABB DSRF180A 57310255-AV Digital Remote I/O Module
  • ABB DSTC175 57310001-KN Precision Control Module
  • ABB DSSB140 48980001-P Battery Unit Industrial Control Module
  • ABB UAC389AE02 HIEE300888R0002 PCB Board
  • ABB PFTL101B 20KN 3BSE004203R1 DCS Module
  • ABB UFC718AE101 HIEE300936R0101 PCB Circuit Board
  • ABB UNS2880b-P,V2 3BHE014967R0002 Control Board
  • ABB UNS0887A-P 3BHE008128R0001 Communication Module
  • ABB UNS2882A-P,V1 3BHE003855R0001 EGC Board
  • ABB UNS2882A 3BHE003855R0001 Interface Board
  • ABB UNS4881b,V4 3BHE009949R0004 Controller
  • ABB 216EA62 1MRB150083R1/F 1MRB178066R1/F 216EA62 Redundant system modules
  • ABB 216DB61 HESG324063R100/J Controller Module
  • ABB PFSK142 3BSE006505R1 Control board
  • ABB DSAI133A 3BSE018290R1 Analog Input Module
  • ABB PFTL201C-10KN 3BSE007913R0010 Load Cells
  • ABB CI858-1 3BSE018137R1 Industrial Module
  • ABB 5SHY35L4520 5SXE10-0181 AC10272001R0101 Controller
  • ABB TU847 3BSE022462R1 Module Termination Unit
  • ABB 6231BP10910 PLC Analog Output Module
  • ABB 07BR61R1 GJV3074376R1 Distributed I / O Coupler
  • ABB DI93A HESG440355R3 Digital Input Module
  • ABB IC660BBA104 6231BP10910 Industrial Control Module
  • ABB TP858 3BSE018138R1 Module Controller
  • ABB PFEA111-65 3BSE050090R65 Tension Electronics Module
  • ABB DSMB-02C 3AFE64666606 Power Supply Board