Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

The development and future prospect of urban sewage treatment

来源: | 作者:佚名 | 发布时间 :2024-01-08 | 735 次浏览: | Share:

1.1 Practice history of urban sewage treatment in China

1.1 Late development

Water pollution control is now one of the most pressing challenges facing China. In the fight against environmental pollution, wastewater treatment plays a vital role. Although China has the world's largest wastewater treatment capacity and market, its development history is actually very short. Compared with industrialized countries that had widely implemented wastewater management a century ago, China's wastewater management was almost blank 40 years ago.

1.2 Rapid development in the past 40 years

Since the reform and development in 1979, China has entered a period of rapid development. With the rapid economic development and urbanization, the amount of urban sewage has increased sharply, and because more and more industrial wastewater enters the sewer, the composition of wastewater has become more and more complex. As the discharge of wastewater into the environment increases. Increased environmental pollution directly threatens urban water and food security, so water pollution control is urgently needed. To address this challenge, China has begun to build more centralized wastewater treatment plants and supplementary facilities.

However, the development rate and treatment capacity of wastewater treatment plants and auxiliary facilities (especially sewers and sludge treatment systems) still lag behind China's economic growth and industrial development. Overall water quality continues to decline, forcing the Chinese government to implement stricter pollution control strategies.

In 2007, a massive algae bloom occurred in Taihu Lake due to severe eutrophication of the water body, which seriously threatened the drinking water safety of nearby cities. Since then, local governments have begun to enforce stricter discharge standards for wastewater from sewage treatment plants. A year later, the first wastewater treatment plant to implement the Grade A wastewater discharge standard (GB 18918-2002) was put into use in Wuxi.

The pollution of China's water environment has also exacerbated water shortages, especially in northern China, which has created an urgent need for wastewater recycling and reuse. Beijing has pioneered this and has made great strides in building water recycling infrastructure.

In 2016, Beijing Gaobeidian Sewage Treatment Plant was upgraded to a recycled water plant with a treatment capacity of 1 million m³/d, announcing China's transition from simple treatment to recycled treatment. But China's overall water recovery rate is still low compared to many developed countries, and because of its relatively low quality, reclaimed water is mainly reused as landscape water. At this stage, the price of reclaimed wastewater remains uncompetitive with conventional water supply, and the establishment of reclaimed water infrastructure and programs has been slow.

2. Today's challenges and achievements

2.1 Notable achievements in the field of sewage treatment in China

After nearly 40 years of spectacular development, China now has the largest municipal wastewater infrastructure in the world. By the end of 2018, China had built more than 5,000 municipal sewage treatment plants with a daily treatment capacity of nearly 200 million m3/d. By 2018, the sewage treatment rate had reached more than 90 percent.

The construction of wastewater treatment plants is just one part of the rapid growth of China's wastewater treatment industry. Thanks to its strong national administrative system and the valuable experience of developed countries, China has made great strides in the construction and management of wastewater infrastructure in the past 40 years. The total market value and operational capacity of China's water companies are at the leading level in the world. The wastewater management model has also shifted from a single government-led construction and operation model to multiple systems involving government and business. This transformation has not only reduced the financial burden of the government to a certain extent, but also improved the construction and operation efficiency of wastewater treatment facilities.

China also now has the world's largest research team in water management, thanks to a steady increase in funding that far exceeds that of any other region in the world. China's innovation capacity and international competitiveness can be seen from the publications, and China's total number of SCI papers in the field of water research is second only to the United States. Such excellent innovation ability has laid a solid foundation for the future revolution of China's wastewater management model and treatment technology.

2.2 Remaining gaps and challenges

(1) The design and operation of the water plant is inconsistent with the requirements of sustainable development. At present, improving the pollutant removal rate is still the core objective of wastewater treatment plant operation, and the Grade A wastewater standard is increasingly adopted in wastewater treatment plants nationwide. To this end, most plants have eliminated primary sedimentation tanks, implemented delayed aeration processes, and added some biological filters to improve nitrogen removal rates. This increases energy chemical consumption and therefore makes wastewater treatment plants indirectly a non-negligible source of greenhouse gas emissions.

  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module
  • GE IS410STCIS2A IS400STCIS2AFF Industrial Control Module
  • GE DS200DCFBG2BNC DS200DCFBG1BNC DC Feedback Board
  • GE VME5565 VMIVME-5565-11000 332-015565-110000 P Reflective Memory
  • GE VMIVME-7807 VMIVMME-01787-414001 350-00010078007-414001 D module
  • GE IS220PDOAH1A 336A4940CSP2 Discrete Output Module
  • GE VMIVME-4150 Analog Output Module
  • GE WESDAC D20 PS Industrial Power Module
  • GE 369B1860G0031 servo drive module
  • GE 369B1859G0021 Input/Output Module
  • GE 208D9845P0008 Motor Management Relay
  • GE IS420UCSCH1A-F.V0.1-A Independent Turbine Controller
  • GE D20EME10BASE-T 820-0474 Ethernet Interface Module
  • GE DS200DCFBG2BNC MRP445970 DC Feedback Board
  • GE IC800SSI228RD2-EE servo motor controller
  • GE IS200JPDMG1ACC S1AT005 Digital Input/Output (I/O) Module
  • GE IS200TSVCH1AED servo input/output terminal board
  • GE IS200TTURH1CCC S1DF00Z Terminal Turbine Plate
  • GE IS200TSVCH1ADC S1CX01H servo input-output board
  • GE IS200TRPGH1BDD S1C5029 Trip Solenoid Valve Control Board
  • GE IS220YAICS1A L Analog Input/Output Module
  • GE UCSC H1 IS420UCSCH1A-F-VO.1-A Controller Module
  • GE UCSC H1 IS420UCSCH1A-B Communication Processing Module
  • GE IC697VDD100 Digital Input Module
  • GE V7768-320000 3509301007768-320000A0 Controller Module
  • GE IS410TRLYS1B Relay Output Module
  • GE IS415UCVGH1A V7666-111000 VME Control Card