Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Gas Flaring

来源: | 作者:佚名 | 发布时间 :2023-11-21 | 797 次浏览: | Share:

What is gas flaring?

Non-emergency flaring and venting occur when oil field operators opt to burn the "associated" gas that accompanies oil production, or simply release it to the atmosphere, rather than to build the equipment and pipelines to capture it.

Why is it important?

Flaring results in the release of substantial volumes of potent GHGs, including methane, black soot and nitrous oxide. Venting causes even worse environmental damage than flaring.

Where do we need to go?

With natural gas prices at historic highs, gas flaring is an extraordinary waste of money in addition to its negative impacts on climate change and human health. Bringing this gas to market could offer relief to very tight gas markets and, in many cases, could do so faster and cheaper than investing in new supply.

Around 140 bcm of natural gas is flared globally each year. This is a major source of CO2 emissions, methane and black soot, and is damaging to health. In 2022, the volume of gas flared worldwide fell by around 5 billion cubic meters (bcm) to 139 bcm (about 3% reduction). Flaring resulted in 500 Mt CO2 equivalent annual GHG emissions in 2022. Around 70% of gas flared goes to flares that operate on a near continual basis. In the Net Zero Emissions by 2050 (NZE) Scenario, all non-emergency flaring is eliminated globally by 2030, resulting in a 95% reduction in flared volumes and avoiding 365 Mt CO2-eq. 

Non-emergency flaring and venting (which causes even worse environmental damage than flaring; see Methane Emissions from Oil and Gas) occur when operators opt to burn associated gas on a permanent or semi-permanent basis during production, or simply vent it to the atmosphere. With current global operations and maintenance practices and regulations, we estimate the average global combustion efficiency (including both normally operating and extinguished flares) to be around 92%. This results in the release of substantial volumes of potent GHGs, including methane, black soot and nitrous oxide, to the atmosphere

Oil producers have a range of readily available options to reduce and avoid flaring, with a number of new technologies also under development

On-site direct use or energy conversion. Gas that would otherwise be flared is captured and turned into other useable products or electrical power that can be used on site or sold back to an electricity grid. Multiple companies have completed or announced flaring reduction initiatives in major oil developments in Iraq to generate electricity, including Basrah Gas Company and TotalEnergies.  

Portable CNG or mini-LNG facilities to treat gas on site. The CNG process compresses gas at the wellhead so that it can be trucked short distances for infield fuel use or to nearby gas processing facilities. The US Environmental Protection Agency estimated that up to 89% of gas flaring in the Bakken field in 2015 could have been eliminated with this technology. Several similar mini-LNG technologies have been trialled or are in deployment. 

Small-scale gas-to-methanol or gas-to-liquids conversion plants. Several options are being explored, including multifunctional catalysts to develop products from associated gas streams, with a focus on modular conversion equipment.  

Reinjection for disposal or storage can be viable, and so too can reinjection to support ongoing oilfield operations with pressure support. 

There are also technologies and maintenance practices to improve the efficiency of existing flares. For example, using flare tips with more modern designs that improve fuel and air mixing, or converting to flare stacks that ensure adequate fuel–air mixing to consistently achieve very high combustion efficiencies, can significantly reduce emissions resulting from poor combustion efficiency.  

Oil producers have a range of readily available options to reduce and avoid flaring, with a number of new technologies also under development

On-site direct use or energy conversion. Gas that would otherwise be flared is captured and turned into other useable products or electrical power that can be used on site or sold back to an electricity grid. Multiple companies have completed or announced flaring reduction initiatives in major oil developments in Iraq to generate electricity, including Basrah Gas Company and TotalEnergies.  

Portable CNG or mini-LNG facilities to treat gas on site. The CNG process compresses gas at the wellhead so that it can be trucked short distances for infield fuel use or to nearby gas processing facilities. The US Environmental Protection Agency estimated that up to 89% of gas flaring in the Bakken field in 2015 could have been eliminated with this technology. Several similar mini-LNG technologies have been trialled or are in deployment. 

Small-scale gas-to-methanol or gas-to-liquids conversion plants. Several options are being explored, including multifunctional catalysts to develop products from associated gas streams, with a focus on modular conversion equipment.  

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card