Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Progress and development trend of open-pit mining technology (including blasting technology) in metal mines in China

来源: | 作者:佚名 | 发布时间 :2024-02-01 | 736 次浏览: | Share:

1

Progress and development trend of open-pit mining technology in metal mines in China

Due to the disadvantages of difficult relocation and high cost, the research and development of large mobile crushing units has achieved rapid development. The discontinuous mining process of large foreign open-pit mines such as Mount Newman Iron ore in Australia, Landvalley copper mine in Canada, and Siarita copper and molybdenum mine in the United States also uses mobile crushing stations. In 1997, Qidashan Iron Mine of Anshan Iron and Steel Co., Ltd. built the movable belt transportation system for ore and rock in stope for the first time in China. The system has been running normally since it was put into operation, which indicates that the discontinuous mining technology of deep concave open-pit mine in China has reached the world advanced level.

[1.4 Steep Slope railway Transportation System of large deep concave open pit mine] After the open pit mine enters the deep concave mining stage, the railway transportation with a mild slope degree below 30‰ and slow working help mining mode are adopted, and the efficiency is low. With the increase of mining depth, the growth of transportation lines, and the sharp rise of transportation costs, it has become a bottleneck restricting the sustainable development of mines. To this end, during the "Tenth Five-Year Plan" period of scientific and technological research, China has successfully developed a large deep-concave open-pit steep slope railway transportation system, and realized the steep slope railway transportation mining of deep open-pit mine for the first time in China, effectively solving the technical problems of steep slope railway crawling, insufficient traction of locomotive, and safe network power supply, and successfully breaking the "bottleneck" of large deep-concave open-pit steep slope railway transportation. The results were applied to Zhujiabaobao Iron Mine of Panzhihua Iron and Steel Group, extending the railway transportation depth of 45m, mining 30 million tons of iron ore, reducing the stripping ratio of 0.42 tons/ton, increasing the iron-to-transport ratio by 20.72%, extending the mine service life of 15 years, reducing the mining cost by 25.33%, and direct economic benefits of 723 million yuan. The results were extended to Waitoushan open-pit Iron Mine of Benxi Iron and Steel Group Company, extending the railway transportation depth to 72m, saving 150 million yuan of investment, reducing mining costs by 30.43%, and direct economic benefits of 560 million yuan.

[1.5 Safe and Efficient Mining Technology of Large Deep pit open pit] Safe and efficient mining technology of large deep pit open pit is a scientific and technological achievement of the "Tenth Five-Year Plan". This research is aimed at the slope stability of deep concave open pit mine and production scheduling information management. It is the first time at home and abroad to analyze and optimize the stability of open pit slope based on the combination of modern three-dimensional numerical simulation and three-dimensional limit equilibrium analysis, which provides a scientific method for the slope design of deep concave open pit mine. Developed a real-time automated production scheduling system and management platform based on GPS positioning, realized the positioning, tracking and scheduling of personnel and equipment in the production process, realized the whole process control of the entire production system, and made it always in the optimization and efficient operation, and greatly improved the production efficiency.

In view of the three major public hazards of mine blasting (blasting dust, blasting vibration and blasting flying rocks), we independently designed and established a collection, test and analysis system for blasting dust, developed a new high-efficiency gas absorber for the first time, and determined a reasonable charging structure for micro-dust poisoning. Realizing no (low) public hazard in mine blasting. At the same time, a hydraulic charging structure and a comprehensive vibration reduction blasting technology, which reasonably arranges the detonation time sequence and time difference, and adopts the cushioning soft plug layer, greatly reduces the dust and blasting vibration, and obviously improves the blasting effect. The flying stone flexible protective net system is developed for the first time, the throwing distance of blasting flying stone is reduced by 50%, and the degree of flying stone can be controlled within 100mm. The technology as a whole is at the international advanced level.

[1.7 Key Technologies for Smooth transition from Open pit to Underground Mining] "Key Technologies for smooth transition from open pit to underground Mining" is the national "11th Five-Year Plan" science and technology research topic. This topic focuses on the key technical difficulties of mining and safety in the process of open-pit mining, such as when to transition from open-pit mine to underground mine, how to smoothly connect mine development system and open-pit underground production capacity, how to realize efficient underground mining under high and steep slope, how to prevent water inrush in open-pit to underground stope, and how to establish an early warning mechanism of open-pit slope landslide and underground surrounding rock collapse caused by mining disturbance The research is carried out and the following results are obtained: the dynamic relation function of open-pit to underground mining boundary is established, and the method of determining the reasonable time of smooth transition from open-pit to underground mining is invented; In order to ensure the safety of open-pit to underground caving mining method, a formula for calculating the thickness of overburden layer is invented, and the formation technology of ore-rock composite overburden is proposed for the first time, overcoming the safety technical problems of open-pit to underground caving mining method. Based on improving the efficiency of two-step mining from open pit to underground, the double bottom structure and its technology are invented to realize safe and efficient mining. In view of the characteristics of large and concentrated catchment moment of open pit, a new idea of building emergency middle section to prevent water inrush disaster is put forward creatively, and the construction method of emergency water silo is invented to improve the ability of preventing water inrush disaster in open pit to underground mining. For the first time in China, the domestic 30-channel microseismic monitoring network system has been established, and the safety monitoring and disaster warning system for the process of open-pit to underground mining has been constructed. The new functions of surrounding rock damage and degradation evaluation and rock mass quality analysis, microseismic monitoring data and three-dimensional stress field data integration, mine stress field background early warning and forecast visual digital scene, monitoring data remote transmission and expert consultation, mine personnel positioning and emergency rescue have been developed, which have reliably prevented mine disasters.

  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module
  • GE IS410STCIS2A IS400STCIS2AFF Industrial Control Module
  • GE DS200DCFBG2BNC DS200DCFBG1BNC DC Feedback Board
  • GE VME5565 VMIVME-5565-11000 332-015565-110000 P Reflective Memory
  • GE VMIVME-7807 VMIVMME-01787-414001 350-00010078007-414001 D module
  • GE IS220PDOAH1A 336A4940CSP2 Discrete Output Module
  • GE VMIVME-4150 Analog Output Module
  • GE WESDAC D20 PS Industrial Power Module
  • GE 369B1860G0031 servo drive module
  • GE 369B1859G0021 Input/Output Module
  • GE 208D9845P0008 Motor Management Relay
  • GE IS420UCSCH1A-F.V0.1-A Independent Turbine Controller
  • GE D20EME10BASE-T 820-0474 Ethernet Interface Module
  • GE DS200DCFBG2BNC MRP445970 DC Feedback Board
  • GE IC800SSI228RD2-EE servo motor controller
  • GE IS200JPDMG1ACC S1AT005 Digital Input/Output (I/O) Module
  • GE IS200TSVCH1AED servo input/output terminal board
  • GE IS200TTURH1CCC S1DF00Z Terminal Turbine Plate
  • GE IS200TSVCH1ADC S1CX01H servo input-output board
  • GE IS200TRPGH1BDD S1C5029 Trip Solenoid Valve Control Board
  • GE IS220YAICS1A L Analog Input/Output Module
  • GE UCSC H1 IS420UCSCH1A-F-VO.1-A Controller Module
  • GE UCSC H1 IS420UCSCH1A-B Communication Processing Module
  • GE IC697VDD100 Digital Input Module
  • GE V7768-320000 3509301007768-320000A0 Controller Module
  • GE IS410TRLYS1B Relay Output Module
  • GE IS415UCVGH1A V7666-111000 VME Control Card