Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Progress and development trend of open-pit mining technology (including blasting technology) in metal mines in China

来源: | 作者:佚名 | 发布时间 :2024-02-01 | 744 次浏览: | Share:

1

Progress and development trend of open-pit mining technology in metal mines in China

Due to the disadvantages of difficult relocation and high cost, the research and development of large mobile crushing units has achieved rapid development. The discontinuous mining process of large foreign open-pit mines such as Mount Newman Iron ore in Australia, Landvalley copper mine in Canada, and Siarita copper and molybdenum mine in the United States also uses mobile crushing stations. In 1997, Qidashan Iron Mine of Anshan Iron and Steel Co., Ltd. built the movable belt transportation system for ore and rock in stope for the first time in China. The system has been running normally since it was put into operation, which indicates that the discontinuous mining technology of deep concave open-pit mine in China has reached the world advanced level.

[1.4 Steep Slope railway Transportation System of large deep concave open pit mine] After the open pit mine enters the deep concave mining stage, the railway transportation with a mild slope degree below 30‰ and slow working help mining mode are adopted, and the efficiency is low. With the increase of mining depth, the growth of transportation lines, and the sharp rise of transportation costs, it has become a bottleneck restricting the sustainable development of mines. To this end, during the "Tenth Five-Year Plan" period of scientific and technological research, China has successfully developed a large deep-concave open-pit steep slope railway transportation system, and realized the steep slope railway transportation mining of deep open-pit mine for the first time in China, effectively solving the technical problems of steep slope railway crawling, insufficient traction of locomotive, and safe network power supply, and successfully breaking the "bottleneck" of large deep-concave open-pit steep slope railway transportation. The results were applied to Zhujiabaobao Iron Mine of Panzhihua Iron and Steel Group, extending the railway transportation depth of 45m, mining 30 million tons of iron ore, reducing the stripping ratio of 0.42 tons/ton, increasing the iron-to-transport ratio by 20.72%, extending the mine service life of 15 years, reducing the mining cost by 25.33%, and direct economic benefits of 723 million yuan. The results were extended to Waitoushan open-pit Iron Mine of Benxi Iron and Steel Group Company, extending the railway transportation depth to 72m, saving 150 million yuan of investment, reducing mining costs by 30.43%, and direct economic benefits of 560 million yuan.

[1.5 Safe and Efficient Mining Technology of Large Deep pit open pit] Safe and efficient mining technology of large deep pit open pit is a scientific and technological achievement of the "Tenth Five-Year Plan". This research is aimed at the slope stability of deep concave open pit mine and production scheduling information management. It is the first time at home and abroad to analyze and optimize the stability of open pit slope based on the combination of modern three-dimensional numerical simulation and three-dimensional limit equilibrium analysis, which provides a scientific method for the slope design of deep concave open pit mine. Developed a real-time automated production scheduling system and management platform based on GPS positioning, realized the positioning, tracking and scheduling of personnel and equipment in the production process, realized the whole process control of the entire production system, and made it always in the optimization and efficient operation, and greatly improved the production efficiency.

In view of the three major public hazards of mine blasting (blasting dust, blasting vibration and blasting flying rocks), we independently designed and established a collection, test and analysis system for blasting dust, developed a new high-efficiency gas absorber for the first time, and determined a reasonable charging structure for micro-dust poisoning. Realizing no (low) public hazard in mine blasting. At the same time, a hydraulic charging structure and a comprehensive vibration reduction blasting technology, which reasonably arranges the detonation time sequence and time difference, and adopts the cushioning soft plug layer, greatly reduces the dust and blasting vibration, and obviously improves the blasting effect. The flying stone flexible protective net system is developed for the first time, the throwing distance of blasting flying stone is reduced by 50%, and the degree of flying stone can be controlled within 100mm. The technology as a whole is at the international advanced level.

[1.7 Key Technologies for Smooth transition from Open pit to Underground Mining] "Key Technologies for smooth transition from open pit to underground Mining" is the national "11th Five-Year Plan" science and technology research topic. This topic focuses on the key technical difficulties of mining and safety in the process of open-pit mining, such as when to transition from open-pit mine to underground mine, how to smoothly connect mine development system and open-pit underground production capacity, how to realize efficient underground mining under high and steep slope, how to prevent water inrush in open-pit to underground stope, and how to establish an early warning mechanism of open-pit slope landslide and underground surrounding rock collapse caused by mining disturbance The research is carried out and the following results are obtained: the dynamic relation function of open-pit to underground mining boundary is established, and the method of determining the reasonable time of smooth transition from open-pit to underground mining is invented; In order to ensure the safety of open-pit to underground caving mining method, a formula for calculating the thickness of overburden layer is invented, and the formation technology of ore-rock composite overburden is proposed for the first time, overcoming the safety technical problems of open-pit to underground caving mining method. Based on improving the efficiency of two-step mining from open pit to underground, the double bottom structure and its technology are invented to realize safe and efficient mining. In view of the characteristics of large and concentrated catchment moment of open pit, a new idea of building emergency middle section to prevent water inrush disaster is put forward creatively, and the construction method of emergency water silo is invented to improve the ability of preventing water inrush disaster in open pit to underground mining. For the first time in China, the domestic 30-channel microseismic monitoring network system has been established, and the safety monitoring and disaster warning system for the process of open-pit to underground mining has been constructed. The new functions of surrounding rock damage and degradation evaluation and rock mass quality analysis, microseismic monitoring data and three-dimensional stress field data integration, mine stress field background early warning and forecast visual digital scene, monitoring data remote transmission and expert consultation, mine personnel positioning and emergency rescue have been developed, which have reliably prevented mine disasters.

  • FOXBORO L0130AD L0130AE-0H Digital Input Module
  • FOXBORO 0399085B 0303440C+0303458A combination control module
  • FOXBORO SY-0399095E SY-0303451D+SY-0303460E DC power module
  • FOXBORO 0399071D 0303440C+0303443B Combination Control Board
  • FOXBORO RH924UQ controller module
  • FOXBORO E69F-TI2-S dual line temperature transmitter
  • FOXBORO 0399144 SY-0301059F SY-1025115C/SY-1025120E Combination Control Board
  • FOXBORO SY-60399001R SY-60301001RB SY-60702001RA/SY-61025006RA/SY-61025004RA/SY-61025001RA High performance industrial control module
  • FOXBORO 0399143 SY-0301060R SY-1025115C/SY-1025120E Sensor
  • FOXBORO 873EC-JIPFGZ Industrial Control Module
  • FOXBORO FBM230 P0926GU Communication Module
  • FOXBORO P0916PH P0916JS Input/Output Module
  • FOXBORO P0916PH P0916AL I/O module
  • FOXBORO 870ITEC-AYFNZ-7 Intelligent Electrochemical Transmitter
  • FOXBORO FBM207 P0914TD Voltage Monitor
  • FOXBORO FBM201D Discrete Input Module
  • FOXBORO P0923ZJ switch I/O interface module
  • FOXBORO P0923NG Intelligent Differential Pressure Transmitter
  • FOXBORO P0916KN power module
  • FOXBORO P0916KM I/A series module
  • FOXBORO P0916WE Terminal Cable
  • FOXBORO P0916VB power supply module
  • GE Hydran M2-X Transformer Condition Monitoring Device
  • FOXBORO P0916VL control module
  • FOXBORO P0916VC High Performance Terminal Cable
  • FOXBORO P0916WG system module
  • FOXBORO P0972ZQ interface channel isolation 8-input module
  • FOXBORO P0973BU high-frequency fiber optic jumper
  • FOXBORO P0926MX Splasher Confluencer
  • FOXBORO P0961S connector module
  • FOXBORO P0903NU system module
  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller