Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Key technologies and development status of hydrogen energy utilization in the context of carbon neutrality

来源: | 作者:佚名 | 发布时间 :2023-11-21 | 450 次浏览: | Share:

4. Ideas and cases of hydrogen energy utilization in Japan

Japan's power system is dominated by centralized generation, and the Fukushima nuclear accident has exposed the fragility of the current system. Due to the heavy dependence on overseas energy supplies and the stagnation of nuclear power development, Japan's energy self-sufficiency rate fell from 20% in 2010 to about 8% in 2016. The realization of a self-sufficient distributed energy system has become the direction of Japan's energy transition [38-39]. It has been considered an effective, economical and safe way to construct hydrogen energy supply system and use it near the place of consumption. Especially for Japan, which is prone to natural disasters, the multiple utilization ways of hydrogen energy are suitable for distributed energy development and large-scale centralized power generation, which greatly enriches the flexibility of the energy system. According to the goal of Japan's "hydrogen society" national strategy, hydrogen energy will eventually form a new secondary energy supply structure together with electric energy and heat energy, and be popularized and utilized in the whole society. Japan's "White Paper on hydrogen Energy" predicts that by 2030, Japan's hydrogen energy market will reach 1 trillion yen, and hydrogen fuel power generation will account for 5% of the country's total power generation.

Similar to Europe and the United States and other countries, Japan has officially carried out the demonstration and verification of PtG projects according to the planning of the "Hydrogen energy and fuel cell Strategic Roadmap". Among them, the "Fukushima Hydrogen Energy Research Area (FH2R)" project aims to build the world's largest "hydrogen society" demonstration base and smart community for hydrogen production, storage, transportation and use of renewable energy, and construct and operate a 10MW hydropower electrolysis plant in Namie, Fukushima Prefecture. In order to show the world the results of hydrogen energy development, the Japanese government also spent $350 million to build an underground pipeline for the Tokyo Olympic Games, and directly input the Fukushima hydrogen energy into the Olympic Village, so that at least 100 hydrogen fuel cell buses and training facilities, athletes dormitory and other more than 6,000 Olympic village buildings are all powered by hydrogen fuel.

Compared with the European Union and the United States, Japan has set the world's highest standard technical indicators and cost targets for PtG systems, including achieving investment costs of 50,000 yen /kW by 2020; Japan's renewable energy fixed price purchase system (FIT) will officially enter the power generation trading market by 2032.

In addition to the "Fukushima" project, Japan has also carried out the development and demonstration of hydrogen direct combustion power generation technology. In April 2018, Japanese companies Obayashi Group and Kawasaki Heavy Industries took the lead in the world to use 100% hydrogen as the fuel of 1MW gas turbine units. During the test period, 1.1MW of electricity and 2.8MW of heat were supplied to four adjacent facilities in PortLand, an artificial island in the central ward of Kobe City (Kobe City Medical Center General Hospital, Kobe Island Sports Center, Kobe International Exhibition Center, and Hong Kong Island Sewage Treatment Plant). With the support of a government grant, the company supplies the PortLand area's hotels, convention centers and other energy at market rates, and currently provides half of the area's annual electricity and heat demand, with Kansai Electric Company supplementing the shortfall.

In order to achieve large-scale hydrogen power generation, the experiment and demonstration of gas turbine co-firing power generation technology containing 20% hydrogen natural gas hybrid fuel has also been promoted in PortLand since 2018, and the detailed design experiment of 500MW class gas turbine has been carried out. With the breakthrough of technical problems such as reducing NOx value and improving power generation efficiency, large-scale hydrogen power generation will be possible. According to the goals of Japan's "hydrogen energy and fuel cell strategic roadmap", hydrogen power generation will be commercialized in 2030, the power generation cost is less than 17 yen/(kW×h), the hydrogen power consumption reaches 300,000 t per year, and the power generation capacity is equivalent to 1GW; The ultimate goal is to generate electricity at a cost of less than 12 yen/(kW×h), to remain competitive with LNG thermal power generation, taking into account environmental value, and to use 5 million to 10 million tons of hydrogen power per year, generating capacity equivalent to 15 to 30GW.

5. Hydrogen cost analysis

If hydrogen energy is to be widely accepted as an emerging energy source and occupy a place in the future energy structure, the cost factor will always play a decisive role. In the world, the hydrogen industry chain is not mature at this stage, especially the high price of hydrogen, and the cost still restricts the long-term development of hydrogen energy. Taking logistics vehicles, a typical scene of domestic hydrogen fuel cell vehicles, as an example, two popular hydrogen fuel cell logistics vehicles are selected to compare with traditional diesel logistics vehicles. The maximum load capacity of the two hydrogen fuel cell logistics vehicles is 3t, while the fuel consumption of 3t diesel logistics vehicles on the market is about 15L for 100 kilometers. The parameters of the two hydrogen fuel cell logistics vehicles are shown in Table 3. With reference to the current market price, assuming that No. 0 diesel is 6 yuan /L, the crossover point of the use cost of hydrogen and diesel is obtained. According to estimates, the crossover point of the use cost should be below 30 yuan /kg, that is, the price of hydrogen below this price in order to occupy the advantage in the market, and the current price of domestic hydrogen stations is 60 to 80 yuan /kg. Therefore, how to reduce the cost of hydrogen supply is an unavoidable problem for the current industrial development.

  • GE Fanuc - A16B-3200-0020 Circuit Board Industrial Automation Core Component
  • GE IS420UCSBH3A - Advanced Industrial Control Module
  • GE Fanuc - IC693APU300J PAC Systems RX3i PLC Controller
  • GE FANUC - IC693MDL654 Modular Control System
  • GE Fanuc - DS200GDPAG1AEB Industrial Control Module for Advanced Automation
  • GE Fanuc - IC694ACC310 Filler Module Advanced Process Control Solution
  • GE Fanuc - IC200MLD750 Output Module Versamax PLC
  • GE IS220PSCAH1A - Advanced Power Control Module for Turbine Systems
  • GE Fanuc - IC220STR001 Direct Motor Starter for Precision Control
  • GE Fanuc - IC698CPE020-GP Slot Rack Card High Performance Control Module
  • GE FANUC - IC693MDL240 Modular Control Module
  • GE Electric - IC693PBM200-FE Master Module Industrial Automation Control Core Component
  • GE URRHV - Power Supply Advanced Industrial Control
  • GE DS6800CCID1D1D - Industrial I/O Interface Module
  • GE MULTILIN - EPM 9650 POWER QUALITY METER PL96501A0A10000
  • GE Electric - Fanuc IC697CMM742-KL Advanced Type 2 Ethernet Interface Module
  • GE Fanuc - IS200TBAIH1C Analog Input Terminal Board
  • GE FANUC - IC600FP608K IC600LX624L Memory Module for Industrial Automation
  • GE Fanuc - 531X135PRGAAM3 Programmer Card Board
  • GE IC200PER101E - Power Supply
  • GE IS420ESWBH3A - High-Speed Industrial Ethernet IONet Switch
  • GE Electric - EPSCPE100-ABAG Standalone PACSystems RSTI-EP Controller
  • GE IS200ICBDH1ACB - Advanced Industrial Control PCB for Critical Applications
  • GE DS200FCGDH1BAA - Precision Gate Distribution & Status Card for Industrial Control Systems
  • GE Fanuc - IC660HHM501R Portable Monitor for Industrial Automation
  • GE DS200IMCPG1C - Power Supply Interface Board for Industrial Controls
  • GE FANUC - IC695ALG508 Advanced Control Module for Industrial Automation
  • GE VM-5Z1 - PLC Module Programmable Logic Controller
  • GE FANUC - IC754CKF12CTD QuickPanel Control Industrial-grade HMI for Precision Automation
  • GE UR - 9GH UR9GH CPU High-Performance Control Module for Industrial Automation
  • GE IS220PGENH1A - Generator Power Unit (I/O)
  • GE Electric - IS220PD0AH1A Industrial Control System I/O Pack Module
  • GE IC694ALG221B - High-Performance Bus Expansion Cable for Enhanced PLC Connectivity
  • GE IC693MDL752 - High-Performance Negative Logic Output Module
  • GE DS200VPBLG1AEE - High-Performance Circuit Board
  • GE Electric SR745-CASE - 745-W2-P5-G5-HI-T Excellent Value
  • GE IS200TTURH1CBB - High-Performance Programmable Logic Controller Module
  • GE A06B-0227-B100 - Servo Motor Precision
  • GE 8021-CE-LH - High-Performance AC/DC Coil Contactor
  • GE FANUC - IC693BEM340 High-Speed Ethernet Controller Module
  • GE DS200SDCIG2AGB - Advanced DC Power Supply & Instrumentation Board for Industrial Control
  • GE FANUC - IC693CHS397E CPU Base Advanced Control Module for Industrial Automation
  • GE UR7BH - Relay Module High Performance Relay for Industrial Control Applications
  • GE FANUC - A17B-3301-0106 CPU MODULE
  • GE Fanuc - HE693ADC415E Drive Module
  • GE IS200VAICH1D - Analog Input Module for Industrial Control Solutions
  • GE Fanuc - DS200SHCAG1BAA High-Performance Turbine Energy Shunt Connector Board
  • GE Fanuc - IS215VCMIH2CC | Communication Card
  • GE IC690ACC901 - Mini Converter Kit Efficient Communication Solution
  • GE Electric - DS3800HCMC Gas Turbine Daughter Board For Enhanced Control & Efficiency
  • GE Electric - FANUC IC200ALG320C Analog Output Module
  • GE Electric - (GE) IS420UCSBH3A REV D
  • GE IC693MDL646B - Advanced Input Module for Industrial Control Solutions
  • GE IC693MDL730F - Advanced Digital Input Module for Industrial Automation
  • GE IC200ALG240 - Analog Input I/O
  • GE IC660BBD020Y - | DC Source I/O Block
  • GE Electric - IC698ACC735 Shielded Single Slot Faceplate
  • GE Fanuc - IC200MDL730 Discrete Output Module
  • GE IS200VAOCH1B - VME Analog Output CD for MARK VI
  • GE IC200ALG328E - High Precision Analog Output Module
  • GE Fanuc - IC200CHS001 A Cutting-edge VersaMax PLC
  • GE UR6DH - Digital I/O Module Advanced Power System Communication
  • GE Fanuc - IC695CHS007 Universal Control Base
  • GE VMIVME-2540-200 - Intelligent Counter & Controller
  • GE Fanuc - DS200LDCCH1ARA Advanced Mark VI Circuit Board for Industrial Automation
  • GE DS3800HMPG - Cutting-Edge CPU Card for Advanced Industrial Control
  • GE IS220PAICH1B - 10 Analog Inputs & 2 Analog Outputs
  • GE DS200TCQAG1BHF - Analog Input/Output Card Precision Control for Industrial Automation
  • GE FANUC - 531X139APMASM7 Micro Application Board for Industrial Control
  • GE DS3800NPPC - Circuit Board Precision Control in Industrial Automation
  • GE IC200UEX626 - 6-Channel Analog Expansion Module for Advanced Process Control
  • GE IC693PWR331D - Advanced Power Supply for Industrial Automation
  • GE DS200TBQBG1ACB - Advanced RST Analog Termination Board
  • GE Fanuc - DS200TBCAG1AAB Advanced PLC for Industrial Automation
  • GE FANUC - DS200LRPAG1AGF Industrial Line Protection Module
  • GE IC693MDL654 - Advanced Logic Input Module for Industrial Control Systems
  • GE Industrial - Controls IC695LRE001B Transmitter Module
  • GE DS3800HUMB1B1A - Universal Memory Board
  • GE IC660BBD021W - Advanced 3-Wire Sensor Block for Industrial Control Systems
  • GE FANUC - IC694APU300 High-Speed Counter Module
  • GE IC694ACC300 - Input Simulator Module Advanced Control Solutions
  • GE FANUC - IC687BEM713C Advanced Bus Transmitter Module for Industrial Automation
  • GE IS200TGENH1A - Advanced Turbine Control Board for Gas and Steam Turbines
  • GE IC693MDL654F - Advanced Modular PLC Input Module for Industrial Automation
  • GE IS200AEPAH1BMF-P - | IS210BPPCH1AD I/O Pack Processor Board
  • GE IS230TRLYH1B - New in Box | Industrial Control Module
  • GE 489-P5-HI-A20-E - Industrial Generator Management Relay
  • GE Electric - (GE) IS200IVFBG1AAA Fiber Optic Feedback Card for Industrial Automation
  • GE Electric - IC693PWR322LT Advanced Industrial Power Supply
  • GE Fanuc - IC200ALG432 Analog Mixed Module VersaMax
  • GE Fanuc - IC693ALG392 Precision Analog Output for Industrial Control Systems
  • GE Fanuc - IC695ACC402 Evergreen Controller Advanced PLC Solution for Industrial Automation
  • GE IC693ACC300D - Input Simulator Module
  • GE 46-288512G1-F - Advanced Industrial Control Module
  • GE IC755CSS12CDB - High-Performance Control Module
  • GE DS200TCCAG1BAA - High-Performance PLC PC Board
  • GE IC3600TUAA1 - Advanced Industrial Control Module
  • GE 8810 - HI TX-01 Brand New Advanced Industrial Control Module
  • GE 750-P5-G5-D5-HI-A20-R-E - Relay
  • GE Fanuc - IC200MDL330 Network Interface Unit Advanced Networking for Industrial Automation
  • GE Fanuc - IC676PBI008 Waterproof Input Block
  • GE Circuit - Board 304A8483G51A1A
  • GE YPH108B - Measurement Board
  • GE UR6AH - Digital I/O Module Industrial Control
  • GE IC200ALG264E - High Precision Current Analog Input Module
  • GE IS200TRLYH2C - Relay Output Module with Contact Sensing Terminal Board; Manufacturer GE-FANUC
  • GE IC693ALG442B - Advanced Programmable Logic Controller Module
  • GE IC693ACC301 - Lithium Battery Replacement Module
  • GE Fanuc - DS200PTBAG1A Termination Board Advanced Control Module
  • GE IS200VCRCH1BBB - Mark VI Circuit Board
  • GE IS200UCVEH2A - High-Performance Exciter Bridge Interface BOARD for Industrial Automation
  • GE IS220PDIOS1A - Mark VI Control Module
  • GE IS210AEBIH3BEC - Advanced Input/Output Board for MKVI Control Systems
  • GE 6KLP21001X9A1 - AC Variable Frequency Drive
  • GE 531X123PCHACG1 - Advanced Power Supply Interface Card
  • GE Electric - STXKITPBS001 Profibus Interface Module for Industrial Control Systems
  • GE DS200TCRAG1AAA - Industrial Grade Relay Output Board for Enhanced Control Systems
  • GE UR9NH - CPUUR CPU Module
  • GE Electric - DS200TCQFG1ACC
  • GE Electric - Fanuc IC200ALG260H Analog Input Module Precision & Reliability in Automation Solutions
  • GE DS200SLCCG3RGH - Industrial Control Module
  • GE DS3800NMEC1G1H - Industrial Motor Control Module
  • GE Fanuc - 531X113PSFARG1 | Mark VI Circuit Board
  • GE Fanuc - IC693ALG392C Analog Output Module Precision Control in Industrial Automation
  • GE IC693ALG220G - Advanced Input Analog Module for Industrial Automation
  • GE DS200DTBCG1AAA - Industrial Control System's Reliable Core
  • GE F31X301DCCAPG1 - Control Board Advanced Industrial Automation Solution
  • GE Electric - (GE) IS200AEAAH1AAA Mark VI Printed Circuit Board