Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

The present situation and development direction of sewage treatment are analyzed

来源: | 作者:佚名 | 发布时间 :2023-11-22 | 344 次浏览: | Share:

0. Introduction

With the continuous improvement of social and economic level, people's requirements for the quality of water resources are also constantly improving. For the quality of water resources, people have begun to realize the serious harm caused by water pollution to the environment and economic development. Therefore, sewage treatment has become one of the indispensable links in urban construction.

The treatment of urban sewage is not only an indispensable link in the process of urban development planning and construction, but also has a great impact on social and economic life. At present, many domestic enterprises invest less money in sewage treatment, and the technology is not perfect, which leads to the serious situation of frequent water pollution events in some areas. In addition, some local governments lack effective and reasonable management measures and scientific and reasonable systems to regulate the urban environment and treat the amount of waste water. Meanwhile, many water bodies are damaged, resulting in ecological crisis.

1. The harm of sewage

The harm caused by sewage is obvious, and the construction of sewage treatment plants in cities will also cause great harm to the environment. Its specific performance in the following three aspects:

1.1 Due to the existence of a large number of suspended matter and organic pollutants in the water layer, the water quality deteriorates.

1.2 Water pollution seriously affects people's domestic water use, production and biological development

Water pollution seriously affects people's domestic water consumption, production and biological development, so it is necessary to make full preparations before sewage discharge to avoid unnecessary losses caused by various reasons and waste of water resources [1]. At the same time, it is also necessary to take into account some factors that may cause damage to the environment: for example, human activities or industrial wastewater discharged into the ground, these are problems that cannot be ignored and need to be effectively controlled and treated accordingly. As urban sewage discharge has certain rules, the impact of different stages must be taken into account in sewage treatment [2].

2. Necessity of sewage treatment

The concept of sewage treatment refers to the separation, purification and reuse of pollutants in urban domestic sewage, so as to make them useful information and realize resource recycling [3]. In China's urban sewage treatment, the main treatment is industrial wastewater and waste gas produced in the production process. Industrial wastewater mainly comes from a large amount of ferrochrome slag and domestic waste discharged from iron and steel smelters. In addition, a large number of pollutants containing heavy metal ions such as lead, cadmium (arsenic) compounds discharged from the production process will also cause serious harm to the environment, so it is very necessary and effective to treat sewage [4].

3. China's current water treatment industry chain

Water treatment industry chain refers to the separation, purification and application of pollutants in sewage through the development and utilization of polluted water bodies for the purpose of sewage treatment, forming a series of new products and putting into production [5].

At present, there are two main models in our country: one is government-led [6]. In this case, the government departments are only responsible for formulating corresponding policies to guide the local environmental planning and construction work; The second is the enterprise model dominated by development investment which the market operates spontaneously. At present, China is mainly composed of enterprise self-produced sewage, self-purification sewage and related ancillary facilities. Due to the lack of unified planning and management, as well as the lack of complete systematic design and other reasons, a lot of resources are wasted. On the other hand, it has also led to the emergence of many problems, which have a negative impact on People's Daily life, and bring pollution and destruction to the environment. Sewage treatment is a complex system project, involving a wide range and comprehensive. Therefore, it is necessary for the government and enterprises to cooperate to complete the project [7].

4. Test items and definition of their concepts

The detection items in this experiment are TP, TN, COD, SS, and NH3-N.

TP: refers to the sum of all kinds of phosphorus in sewage, the greater the TP value, the higher the degree of pollution.

TN refers to the sum of all kinds of phosphorus in sewage, and the greater the TN value, the higher the degree of pollution.

NH3-N refers to the content of ammonia nitrogen in water, and the greater the value of NH3-N, the higher the degree of pollution.

CODcr refers to chemical oxygen demand, which is a chemical method to measure the amount of reducing substances in a water sample that need to be oxidized.

BOD5 refers to the 5-day biological oxygen demand, which means that in a certain period of time, microorganisms decompose some oxidized substances in a certain volume of water, and the greater the value of BOD, the higher the degree of pollution.

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card