Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

What is the history of wastewater treatment technology?

来源: | 作者:佚名 | 发布时间 :2023-11-22 | 476 次浏览: | Share:

According to the growth mode of microorganisms, biological methods can be divided into suspension growth method represented by activated sludge method and adhesion growth method represented by biofilm method. At present, the activated sludge method is the most widely used in urban sewage treatment. However, because the traditional activated sludge operation needs to consume a lot of energy, the operation cost is also high, need to innovate. In order to develop the new technology and process of urban sewage treatment with high efficiency and low consumption, a lot of research has been carried out at home and abroad, and some achievements have been made.

1. Biological treatment of microorganisms

Traditional sewage biological treatment technology mainly relies on two types of microorganisms, namely heterotrophic aerobic microorganisms and heterotrophic anaerobic microorganisms. In recent decades, scientists and engineers have worked together to conduct in-depth research on microorganisms in sewage biological treatment, and have made many achievements, such as: the different types and characteristics of bacteria and protozoa in activated sludge and their synergies have been studied, which has promoted the development of AB process; The research on nitrifying and denitrifying bacteria, as well as the research on the characteristics of phosphorus accumulating bacteria, promoted the development of A/O process with nitrogen removal function and A/A/O process with nitrogen and phosphorus removal function. The research on the population and characteristics of anaerobic microorganisms, and the discovery that anaerobic microorganisms have the ability to partially degrade macromolecular synthetic organic matter, promoted the development of anaerobic biological treatment technology and the process of treating wastewater containing refractory organic matter with anaerobic/aerobic tandem process; The research on the screening, culture and immobilization of high efficiency bacteria provides an effective way to further improve the efficiency of sewage biological treatment, especially the treatment of difficult biodegradable organic matter.

2. Biological treatment process

The three major elements in biological treatment are microorganisms, oxygen and nutrients. The reactor is a place where microorganisms inhabit and grow, and is the main equipment for microbial degradation and utilization of pollutants in sewage. An efficient reactor should be able to maintain the maximum microbial quantity and its activity, be able to effectively supply oxygen (or isolate oxygen), and make good mass transfer conditions between microorganisms, oxygen and organic matter in sewage. According to its characteristics, the reactor can be roughly divided into the following categories:

(1) Suspension growth (such as activated sludge method) or attached growth (such as biofilm method);

② Push flow or completely mixed type;

(3) Continuous operation (such as traditional activated sludge method) or intermittent operation (such as SBR method).

(1) Activated sludge method

Since the activated sludge method was pioneered by Arden and Lockett in 1914, it has been developed and practiced for 104 years, and has been continuously innovated and improved in terms of oxygen supply mode, operating conditions and reactor form. The earliest traditional activated sludge method belongs to the push flow aeration tank. Because the substrate concentration near the water inlet of the pool is higher than that at the outlet end, the initial design did not take into account the change in oxygen demand, resulting in insufficient oxygen in some parts. In order to improve the shortcomings of uneven oxygen supply, in 1936, the uniform aeration method was changed to gradually reduce aeration along the direction of push flow, most of the oxygen in the substrate removal is quite fast at the inlet end, and the effluent end with internal metabolism and decay as the main reaction only needs a small amount of oxygen, which is the traditional activated sludge method standard form - gradually reduced aerated activated sludge method.

Another variant of the activated sludge process, the stage aeration process, appeared in 1942. Stage aeration method is also called multi-point water intake method, the water is divided into several strands, and then several strands of sewage from different points of the aeration tank into the person, so that the oxygen demand is evenly distributed. The idea of re-aerating the sludge before mixing it with raw water has been further developed.

In 1951, the contact stabilized activated sludge method appeared, which is another development form of the traditional activated sludge method. In order to avoid the microbial inadaptation caused by the substrate concentration gradient in the push flow aeration tank, the microbial community was kept in a relatively stable state.

By the end of the 1950s, a completely mixed activated sludge method appeared, the advantage of this form is to provide an environment conducive to the growth of bacterial floc, not conducive to the growth of filamentous bacteria, sludge settlement and compactness are very good, but due to changes in the matrix gradient make the system susceptible to toxic substances. In order to overcome the shortcomings of several other forms of improvement (a large amount of sludge must be disposed of, and the operational control requirements of the process are strict), delayed aeration has emerged, because there is a complete average residence time of cells, so the degree of stability is quite high, but due to economic constraints, it is only used in small facilities with low sewage concentration. In addition, pure oxygen aeration method and deep well aeration method have also appeared.

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card