Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

What is the history of wastewater treatment technology?

来源: | 作者:佚名 | 发布时间 :2023-11-22 | 477 次浏览: | Share:

1) Development of SBR method

As an improvement of the traditional activated sludge process, the SBR process has a wide application prospect. SBR method is short for sequencing batch batch activated sludge removal (also known as sequencing batch reactor), which is currently widely valued at home and abroad, research and application of a sewage biological treatment technology, especially with the development of advanced automatic control technology, the degree of automatic management of sewage treatment plants has been greatly improved. It provides more favorable conditions for the popularization and application of SBR activated sludge process.

In the design and operation of SBR process, according to different water quality conditions, use occasions and effluent requirements, there have been many new changes and developments, and many variations have been produced. Compared with traditional SBR, ICEAS adds a pre-reaction zone. Continuous water intake and intermittent drainage, but because the water intake affects the separation of mud and water during the precipitation period, the water quality is limited. The DAT-IAT process overcomes the shortcomings of ICEAS by changing the pre-reaction area into a pre-aeration tank DAT separate from the SBR reaction tank IAT. DAT is continuously injected and aerated, and the main batch reactor IAT is not affected by the influent during the precipitation stage, and the reflux from IAT to DAT is increased. However, DAT IAT can not achieve good results in the treatment of sewage containing biodegradable organic matter, while CASS process overcomes this shortcoming, and innovates the pre-reaction zone of ICEAS into a biological selector with smaller volume and more optimized and reasonable design. In addition, part of the residual sludge in the main reaction zone is returned to the selector without water in the precipitation stage. Therefore, the system is more stable and has good nitrogen and phosphorus removal effect. IDEA is also a development of CASS, which mainly changes the biological selector into a premix pool separate from the main SBR structure. However, the above processes can only achieve continuous water intake, and intermittent drainage. In order to overcome the disadvantage of intermittent drainage, UNITANK process integrates the advantages of SBR and three-ditch oxidation ditch, and the integrated design enables continuous water intake and continuous water discharge, and the sludge automatic reflux, which eliminates the need for sludge reflux equipment compared with CASS. However, the UNITANK process still has shortcomings such as low sludge concentration in the middle ditch and over-reliance on instrumentation. For example, once the inlet valve is damaged, the whole system cannot work. In order to overcome the shortcomings of the UN-TANK process, A new SBR system MSBR has been produced, which is essentially A/A/O process and SBR system in series, using a single tank multi-cell way, eliminating many valves and meters, increasing the sludge reflux and ensuring a high sludge concentration, with a good nitrogen and phosphorus removal effect. In recent years, many other SBR systems have also been studied deeply, such as anaerobic SBR, multistage SBR, etc., and have achieved good results. With the continuous progress of technology and in-depth research, more SBR variant processes will appear.

2) Development of oxidation ditch

Oxidation ditch is a modification of activated sludge method, and its aeration tank is a closed ditch type, in which the mixed liquid of sewage and activated sludge is constantly circulating, so it is also called "ring aeration tank" and "non-terminal aeration system".

The improvement and development of oxidation ditch process form is inseparable from the development and research of aeration equipment. In the late 1960s, DHV company in the Netherlands applied the vertical low-speed surface aerator to the oxidation ditch process, installed it at the end of the oxidation ditch center partition wall, and used the stirring driving force generated by it to circulate the water and increase the effective water depth of the oxidation ditch to 4.5m, which is the Carrousel oxidation ditch process, almost at the same time. Lecmple and Mandt applied the underwater aeration and push system to the oxidation ditch process for the first time, and developed the jet aeration oxidation ditch process, so that the effective water depth and width of the oxidation ditch are independent of each other, and its depth can reach 7~8m. In 1970, South Africa developed the turntable aerator and the Orbal oxidation ditch process appeared. In recent years, the Dutch DHV company launched a two-layer turbine vertical aerator; The German Passavant company developed a FRP reinforced rotary brush blade with strong corrosion resistance, high strength and small weight. USFilter Envirex has developed a vertical circulation flow reactor (VLR) oxidation ditch process that combines aeration spinning dish (pushing water flow) and crude bubble aeration.

At present, there are more and more companies and institutions researching and developing oxidation ditch technology and producing oxidation ditch noise gas equipment abroad, and oxidation ditch technology will be developed.

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card