Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Look for investment opportunities from the perspective of chemical industry trends

来源: | 作者:佚名 | 发布时间 :2023-11-24 | 235 次浏览: | Share:

1. Look for investment opportunities from the perspective of chemical industry trends

As an intermediate link to undertake upstream production and downstream consumption, the chemical industry will usher in the reshaping of upstream production brought about by energy reform, and on the other hand will benefit from the growth of demand brought about by the development of downstream new energy fields (such as photovoltaic, wind power and new energy vehicles, etc.). We believe that the "double carbon" policy will accelerate the upgrading and adjustment of China's energy structure, the proportion of clean energy in total energy consumption is expected to increase significantly in the future, and the photovoltaic, wind power and new energy automobile industries will bring major development opportunities for related materials in the chemical industry.

1.1. The installed capacity of wind power is growing rapidly, and the demand for carbon fiber has ushered in an outbreak

Wind power blades are large-scale, and the trend of carbon fiber gradually replacing glass fiber is gradually established. At present, in order to reduce the kilowatt-hour cost of wind power and improve product profitability, global wind power giants have established the development goals of large-scale and lightweight wind power blades. In order to reduce the cost, it is necessary to increase the generation time and improve the ability of the fan to capture wind energy, and the most important way is to increase the sweep area of the blade and increase the diameter of the blade. According to statistics, wind power blade size has developed rapidly, from 2010 to 2019, the length of the blade has gradually increased from 100 meters to 125 meters, and the blade size is expected to further increase to 150 meters or even higher in the future. With the increasing of blade length, higher requirements are put forward for blade quality control. It is understood that the traditional blade manufacturing materials are mainly glass fiber composite materials, but the glass fiber blade weight is relatively large, has been unable to meet the development trend of wind power blade large-scale. The carbon fiber composite material has lower density and higher strength than the glass fiber composite material, which can ensure that the wind power blade can increase the length and greatly reduce the blade weight.

The installed capacity of domestic wind power is growing rapidly, and the demand for carbon fiber is strong. During the "13th Five-Year Plan" period, China's wind power installed capacity continues to lead the world, the pace of development is more stable than the "12th Five-Year" period, and the stable new market size has become the biggest foundation and driving force for industry progress. In 2020, 71.67GW of new wind power will be connected to the grid, and 52GW of new lifting capacity will be added, creating a historical record for China's annual new wind power installed capacity. According to GWEC's forecast, the cumulative installed capacity of wind power will reach 909GW by 2023, and the five-year compound growth rate from 2019 to 2023 will reach 9%.

Global annual demand for carbon fiber is growing steadily and is expected to reach 150,000 tons in 2023. Since 2004, the global carbon fiber market has been in short supply, and the price of carbon fiber has risen sharply. With the significant increase in the demand for carbon fiber for aerospace, sports and leisure and industrial applications, the global carbon fiber market has grown rapidly, and the global demand for carbon fiber reached 36,400 tons in 2008, more than double that of 2001; Since then, from 2009 to 2016, global carbon fiber demand continued to rise, including 2015, global carbon fiber demand growth reached 28%. After experiencing rapid growth in 2015, global carbon fiber demand recovered to an average growth rate of about 10% in 2016-2018, and by 2020, the total global carbon fiber demand was about 112,000 tons. Assuming that the future growth rate of carbon fiber demand is still growing at a rate of 10% per year, the total global carbon fiber demand is expected to reach about 150,000 tons in 2023.

The demand for carbon fiber in the aviation sector mainly benefits from the lightweight drive of aircraft. According to the data of Zhiyan Consulting, the current demand for carbon fiber in the aerospace field accounts for about 23%-25%, and the demand for carbon fiber in the aviation field mainly benefits from the lightweight aircraft drive. Taking Boeing's B787 model aircraft as an example, 55% of the weight of the whole fuselage of the aircraft uses carbon fiber reinforced composite materials, reducing the weight of the aircraft by more than 20%, effectively achieving the development needs of efficient emission reduction; On the other hand, according to the official website information of Boeing and Airbus, in 2018, Boeing's composite aircraft B787 delivered 145, an increase of 6.6%, and Airbus's composite aircraft A350 delivered 93, an increase of 19.2%, directly driving the demand for carbon fiber in the aviation field increased by more than 11%. In addition, it is understood that the domestic C919 large passenger aircraft in the radome, wing front and rear edges, movable wings, winglets, wing body fairing, rear fuselage, tail and other main load and sub-load structure made of composite materials, of which 15% of the aircraft fuselage using resin-based carbon fiber material, this is the first large area of domestic civil passenger aircraft to use this material. We believe that with the gradual upgrading of carbon fiber materials technology and the gradual deepening of the layout of lightweight aircraft, carbon fiber has broad development prospects in the aviation field.

  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module
  • GE IS410STCIS2A IS400STCIS2AFF Industrial Control Module
  • GE DS200DCFBG2BNC DS200DCFBG1BNC DC Feedback Board
  • GE VME5565 VMIVME-5565-11000 332-015565-110000 P Reflective Memory
  • GE VMIVME-7807 VMIVMME-01787-414001 350-00010078007-414001 D module
  • GE IS220PDOAH1A 336A4940CSP2 Discrete Output Module
  • GE VMIVME-4150 Analog Output Module
  • GE WESDAC D20 PS Industrial Power Module
  • GE 369B1860G0031 servo drive module
  • GE 369B1859G0021 Input/Output Module
  • GE 208D9845P0008 Motor Management Relay
  • GE IS420UCSCH1A-F.V0.1-A Independent Turbine Controller
  • GE D20EME10BASE-T 820-0474 Ethernet Interface Module
  • GE DS200DCFBG2BNC MRP445970 DC Feedback Board
  • GE IC800SSI228RD2-EE servo motor controller
  • GE IS200JPDMG1ACC S1AT005 Digital Input/Output (I/O) Module
  • GE IS200TSVCH1AED servo input/output terminal board
  • GE IS200TTURH1CCC S1DF00Z Terminal Turbine Plate
  • GE IS200TSVCH1ADC S1CX01H servo input-output board
  • GE IS200TRPGH1BDD S1C5029 Trip Solenoid Valve Control Board
  • GE IS220YAICS1A L Analog Input/Output Module
  • GE UCSC H1 IS420UCSCH1A-F-VO.1-A Controller Module
  • GE UCSC H1 IS420UCSCH1A-B Communication Processing Module
  • GE IC697VDD100 Digital Input Module
  • GE V7768-320000 3509301007768-320000A0 Controller Module
  • GE IS410TRLYS1B Relay Output Module
  • GE IS415UCVGH1A V7666-111000 VME Control Card
  • GE IC800SSI216RD2-CE servo motor controller
  • GE VMIVME-5565-010000 332-01565-010000P Reflective Memory
  • GE IC695ALG508-AA Analog Input Module
  • GE IC660EPM100J Power Monitoring and Control Module
  • GE RS-FS-9001 362A1052P004 Redundant Fan System Module
  • GE IS220UCSAH1AK independent processor module
  • GE 369-HI-0-M-0-0-0-E Motor Management Relay
  • GE CIFX50-C0 interface board
  • GE SR469-P5-H-A20-T Motor Management Relay
  • GE WES5120 2340-21005 power module
  • GE WES5120 2340-21003 Control Module
  • GE D20MIC10BASE-T 820-0756 Ethernet Module
  • GE WES13-3 5167-001-0210 Mechanical Relay Output Module
  • GE WES13-3 2508-21001 Control Board Module
  • GE D20ME 526-2005-216943 Input/Output Module