Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Look for investment opportunities from the perspective of chemical industry trends

来源: | 作者:佚名 | 发布时间 :2023-11-25 | 470 次浏览: | Share:

Domestic carbon fiber high-end import substitution prospects are broad. On the other hand, as domestic enterprises continue to increase investment in the field of carbon fiber, research and development production strength has been greatly improved. At present, in terms of product categories, Guangwei Composite, Zhongfu Shenying, Zhongjian Technology and other enterprises have realized the industrialization of T300/T700 grade carbon fiber products, and successfully applied to the aerospace field. In addition, the key production technology of high-strength and high-model carbon fiber M50J has also been breakthrough. In terms of large tow, the 12,000 tons/year large tow carbon fiber production project created by Jinggong Group and Jilin Chemical Fiber was also completed and put into operation last year, and its large tow carbon fiber production capacity reached 2000 tons/year, successfully filling the blank situation of domestic large tow carbon fiber. In the field of composite materials application, domestic carbon fiber has also successfully entered the aerospace field in recent years, with the successful test flight of domestic large aircraft C919, the future of domestic carbon fiber used in high-end areas is expected to gradually break the foreign monopoly situation.

Considering that the global installed scale of wind power is still expanding, the future demand for carbon fiber for domestic wind power blades will continue to maintain rapid growth. Carbon fiber in the military industry is also continuously achieving import substitution, we believe that with the development of the general trend of the industry, the domestic carbon fiber industry leading growth opportunities.

1.2. The installed capacity of the photovoltaic industry is developing rapidly and continues to drive the demand for soda ash

Soda ash industry prosperity is high, photovoltaic glass will become the core increase of soda ash demand in the future. Soda ash can be divided into light soda ash and heavy soda ash, heavy soda ash is mostly used in float glass, photovoltaic glass and other glass manufacturing. Light soda ash downstream covers metallurgy, printing and dyeing, leather, daily chemical and food and other fields, the application is more dispersed. In terms of production capacity and output, according to Zhuo Chuang consulting data, as of the end of 2020, China's soda ash production capacity of 33.17 million tons, the output of 27.95 million tons, the industry operating rate in the past five years remained in the 83% to 90% range, the industry boom degree is high. In terms of the downstream application of soda ash, according to statistics, the current domestic soda ash downstream consumption structure float glass accounts for about 40%, glass packaging containers account for 12%, and photovoltaic glass accounts for 6%. We believe that with the release of photovoltaic glass production capacity constraints, the rapid development of photovoltaic industry installed capacity in the future, photovoltaic glass will be constructed to drive the core increment of soda ash demand.

It is conservatively predicted that in 2025, China's new photovoltaic installed capacity will pull the annual demand for soda ash exceeding one million tons. In 2020, China's new photovoltaic installed capacity of 48.2GW, an increase of 59%, the cumulative photovoltaic installed capacity of 253GW, China's new photovoltaic installed capacity for 8 consecutive years ranked first in the world, cumulative installed capacity for 6 consecutive years ranked first in the world. According to the forecast data of China Photovoltaic Industry Association, it is conservatively predicted that China's photovoltaic installed capacity in 2021-2025 is 55GW, 60GW, 70GW, 80GW and 90GW, according to each 1GW photovoltaic module corresponding to about 6.6 million square meters of photovoltaic glass. Each square meter of photovoltaic glass weighs about 10kg and each ton of glass produced about 0.2 tons of soda ash consumption is converted. From 2021 to 2025, China's new photovoltaic installed capacity is expected to drive soda ash demand of 726,000 tons, 792,000 tons, 924,000 tons, 1.056 million tons and 1.188 million tons, respectively.

Under the background of "new energy +", the backward production capacity of soda ash is expected to accelerate the clearance, and the future new production capacity will mainly be based on natural alkali method. From the point of view of production process, the main production process of soda ash is divided into three kinds: ammonia alkali method, joint alkali method and natural alkali method, and the capacity of the above three kinds of processes in China is about 50%, 45% and 5% respectively. Among the three alkali making processes, the ammonia-alkali process has greater environmental pollution, consumes a lot of natural resources, the utilization rate of raw salt is low, the by-product calcium chloride is less useful, and most of it is treated as waste residue.

Compared with the ammonia-alkali method, the combined alkali method has less pollution, higher utilization rate of raw salt, and matches with the synthetic ammonia industry. The by-product ammonium chloride can be used as the raw material for the production of compound fertilizer, but the sodium carbonate products produced by the combined alkali method are less salty and granular than ammonia alkali, which is difficult to quality control, and the mother liquor of ammonium chloride is more corrosive to equipment. Natural alkali method not only has less pollution to the environment, but also has obvious cost advantages compared with the other two methods, according to GenesisEnergy, the cost ratio of natural alkali method, ammonia alkali method and combined alkali method is about 1:1.8:2.3. We believe that under the background of "new energy +", China's requirements for carbon emissions and environmental protection control are becoming increasingly strict, and the ammonia-alkali method, which occupies half of the domestic production capacity, will be gradually withdrawn, while the new soda ash production capacity will be mainly based on the trona process.

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card