1.4. Analysis of China's carbon peak emission reduction path and contribution degree in 2030
The "Opinions" put forward clear targets in terms of energy intensity per unit of GDP, carbon dioxide emission intensity per unit of GDP, forest stock, etc., which provides a basis for the calculation of emission reduction contribution of different emission reduction paths. According to the comprehensive report of the "Research on China's Long-term Low-carbon Development Strategy and Transformation Path" project, if the carbon peak target of 2030 is successfully achieved, China's total carbon emissions will peak at 10.473 billion tons, which is still 4.42% more than the total carbon emissions in 2020. In 2030, the reduction of carbon emissions due to the reduction of energy intensity per unit of GDP will be 17.450 million tons, and the reduction of carbon emissions due to the reduction of carbon intensity per unit of energy consumption will be 5.103 million tons, accounting for 76% and 22% respectively. The contribution of energy consumption reduction in the peaking process is higher than that of carbon emission reduction caused by the adjustment of energy structure. (Note: This reduction does not represent an actual reduction in CO2 emissions, but rather the difference between theoretical carbon emissions under uncapped conditions.)
2. Carbon emission of China's chemical industry: emission intensity is concerned
2.1. The total carbon emission of the chemical industry is not high, but the carbon emission intensity per unit GDP is high
Carbon emissions from the chemical industry are not high and have decreased significantly since 2015. According to CEADs statistics, in 2019, the carbon emissions of China's petroleum processing and coking industries, chemical raw materials and chemical products industries were 172 million tons and 164 million tons, respectively, and the emissions of chemical fiber manufacturing, rubber products and plastic products industries were smaller. In addition to the power Department, although the carbon emissions of China's petroleum processing and coking industry, chemical raw materials and chemical products industry ranked top in 2019, the emissions of the top 3 were much higher than the carbon emissions of the chemical industry.
From 1997 to 2019, the highest carbon emission of China's chemical industry was in 2015, which was 464 million tons, and in 2019, it was 341 million tons, down 26.4% compared with 2015. The peak of carbon emissions from the chemical industry has passed, and emissions in 2019 have fallen to 2008 levels.
Industry structure characteristics are different from China, the chemical industry in the United States accounted for a higher proportion of carbon emissions, and declined from 2018 to 2020. According to the United States "Greenhouse Gas Reporting Project (GHGRP)" data, in addition to the Ministry of power, the chemical industry in the United States in 2020 carbon emissions accounted for 16.6%, although the proportion is higher than China, but the total amount is smaller than China. Emissions from the US chemical industry peaked at 191 million tonnes in 2018 and have declined each year since, reaching 180 million tonnes in 2020.
The emission intensity of each sub-industry in the chemical industry is at a medium and high level. In 2017, the carbon emission intensity of China's petroleum processing and coking industry, chemical raw materials and products manufacturing industry, and chemical fiber manufacturing industry was 0.51 tons/million yuan, 0.18 tons/million yuan, and 0.05 tons/million yuan, respectively, ranking 6th, 10th and 17th among 33 industries except the power Department. According to the classification of Ping Xinqiao et al., industries with carbon emission intensity lower than 0.05 tons / 10,000 yuan, between 0.05 tons / 10,000 yuan and 0.5 tons / 10,000 yuan, and higher than 0.5 tons / 10,000 yuan are classified as "light emission industries", "medium emission industries" and "heavy emission industries". The chemical fiber manufacturing industry, chemical raw materials and products manufacturing industry is in the medium emission industry, and the petroleum processing and coking industry is in the rearrangement and release industry.
2.2. Introduction to accounting methods for greenhouse gas emissions of enterprises
Enterprises are the main body of carbon emissions. From the enterprise level, after determining the emission inventory boundary, the following steps are generally taken to calculate GHG emissions: identify GHG emission sources, select GHG emission calculation methods, collect activity data and select emission factors, apply calculation tools, and summarize GHG emission data to the enterprise level.
The first step is to determine the emission source, which can be subdivided into reaction units and specific equipment.
Taking the manufacturing of chemical raw materials and chemical products as an example, the main emission units of general enterprises, synthetic ammonia or methanol enterprises in the industry include: main equipment, synthetic ammonia equipment, methanol equipment, CO2 utilization equipment (such as soda ash equipment, etc.), other public and supporting projects; Direct emission sources mainly include: steam reforming equipment such as coal or natural gas (that is, synthetic gas preparation equipment), synthetic gas conversion equipment, downstream use of CO2 production equipment (such as carbonization tower, falling film evaporator, etc.), steam boilers, power station boiler, fire moment, own vehicles, etc.; Indirect sources of emissions mainly include: equipment that uses outsourced electricity and heat.
email:1583694102@qq.com
wang@kongjiangauto.com