Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

The main problems and solutions of mine ecological restoration

来源: | 作者:佚名 | 发布时间 :2023-11-28 | 433 次浏览: | Share:

China is a big country in the development and utilization of mineral resources. According to the "China Mineral Resources Report 2020", China ranks first in the world in the production and consumption of primary energy, crude steel, 10 non-ferrous metals, gold and cement in the mining industry. The exploitation of mineral resources not only provides a solid resource guarantee for the national economic development, but also brings unprecedented severe ecological environment problems to the mine and the region. On the one hand, the surface land resources will be disturbed and damaged along with mining, such as excavation loss, compression, collapse, etc. On the other hand, the discharge of a large number of harmful substances such as waste gas, waste water and waste residue pollutes the air, water and soil of the mining area, which leads to the decline of regional ecological environment quality. In recent years, Huolinhe coal mine ecological environment inspection incident, Qilian Mountain series of ecological environment destruction and other similar incidents have been exposed, further highlighting the serious ecological environment problems in mining areas.

 Among them, the mine ecological restoration is difficult, which is the key and difficult point of ecological restoration and management. While the ecological damage problems in Qilian Mountain mining area and Muli mining area in Qinghai Province have received widespread attention, people have fully realized that man and nature are a community of life, "to build a solid ecological safety barrier", and the ecological restoration work in mines is imminent.

China has been carrying out mine ecological restoration since the 20th century, but due to the influence of many factors such as historical debts, imperfect laws and regulations, strip management and insufficient technological research and development, the gap of mine ecological restoration is still very large. According to the statistics of remote sensing monitoring data, the area of newly restored mines in 2019 is about 480 km2. Among them, the newly restored area of mines under construction and production is about 192 km2, accounting for 40.05%; The newly restored area of abandoned mines is about 288 km2, accounting for 59.95%. According to the 2020 Coal Industry Development Report, the land reclamation rate in 2020 is about 57%. While paying extensive attention to the ecological restoration of mines with historical debts, more than 10,000 km2 of newly damaged land is added every year. Therefore, it is necessary to scientifically clarify the main problems in the field of mine ecological restoration and seek scientific solutions.

1, the main problems facing mine ecological restoration in China

At present, there are many problems in the field of mine ecological restoration in China, and the following are mainly analyzed from four aspects.

1.1 Noun appellation of related concepts

The term "mine ecological restoration" has been widely adopted in recent years and is also a noun adopted in documents issued at the national level after the establishment of the Ministry of Natural Resources in 2018. China's mine ecological restoration has been carried out for nearly half a century, as early as the 1980s, China began to organize the "comprehensive treatment of coal mining subsidence" (the former Ministry of Coal industry "Six Five" scientific and technological research project (1983-1986)), the State Land Administration and the State Environmental Protection Bureau attach great importance to the "land reclamation" of mining areas.

In different stages of development, different administrative departments, different research fields and industries, there are many concepts related to mine ecological restoration, such as land reclamation, mine geological environment restoration and management, coal mining subsidence management, land reclamation and ecological reconstruction, land reclamation and ecological restoration, mine restoration and so on.

1.1.1 "land reclamation" is not merely the restoration of cultivated land

"Land reclamation" is the earliest special term determined in the field of mine ecological restoration in China (effective on January 1, 1989, see "Land reclamation Provisions"). Later, this provision was upgraded to the "Land Reclamation Regulations", which clearly stipulates that land reclamation refers to the production and construction activities and natural disasters damaged land, take measures to make it available for use.

From the land reclamation regulations to the land reclamation regulations, there is no requirement to restore the damaged land into "cultivated land", but to "adapt to local conditions" to "reach a state of utilization". Due to the principle of priority of cultivated land in the implementation process, many people mistakenly believe that land reclamation is the restoration of cultivated land. Therefore, there is now a voice of "if it is not the restoration of cultivated land, it is not land reclamation", which is to narrow the concept of land reclamation; There is also a view that land reclamation does not pay attention to vegetation restoration and is not ecological. This is also the reason why the words "land reclamation and ecological reconstruction" and "land reclamation and ecological restoration" appear.

The Provisions on the Protection of the Geological Environment in Mines (hereinafter referred to as the "Provisions") promulgated in March 2009 apply to the prevention, treatment and restoration of ground collapse, ground cracks, collapses, landslides, aquifer damage, and topographic and geomorphic landscape damage in mining areas caused by mineral resources exploration and mining activities; At the same time, considering that the restoration and management of mine geological environment in the process of practical application may involve the management of "three wastes" and land reclamation, in order to avoid cross-functional problems, land reclamation is not within the scope of application of the Provisions. This is also one of the main reasons that land reclamation is considered to be the restoration of cultivated land, and the treatment of soil and water pollution in mining areas is generally called ecological restoration.

1.1.2 Wide application of the term "mine ecological restoration"

After the institutional reform of The State Council in 2018, the former Ministry of Land and Resources was adjusted to the Ministry of Natural Resources, and the Department of Territorial and Spatial ecological Restoration was established, and the term "mine ecological restoration" has been widely used. Zhou Lianbi et al. defined mine ecological restoration as the action and process of restoring the ecological environment damaged by mining to the expected state according to local conditions [3], and the research object should be all the ecological environment problems damaged by mining. The Regulations on the Protection of Geological Environment in Mines amended in 2019 are defined as the prevention, treatment and restoration of ground collapse, ground cracks, collapses, landslides, aquifer damage, and topographic and geomorphic landscape damage caused by mineral resource exploration and mining activities. Where the mining of mineral resources involves land reclamation, it shall be implemented in accordance with State laws and regulations on land reclamation. At present, the mine ecological restoration project integrates land reclamation and mine geological environment restoration, but the control of soil and water pollution is still unclear.

In foreign countries, Reclamation, Rehabilitation and Restoration are commonly used to express land reclamation or ecological restoration [4]. Although the three words are different, their connotations all refer to the restoration and management of land and environment damaged by various disturbances. To achieve the same or better state of land use and ecological environment as before the disturbance.

Therefore, no matter "ecological restoration", "ecological reconstruction" or "land reclamation", no matter what specific technology or means is used, no matter whether the original ecological state of the mine is eventually restored or redesigned, the final elimination of mining damage and reasonable use of land value to achieve ecological functions can be achieved, that is, green development is the hard truth.

1.2 Problems in the field of mine ecological restoration supervision

The laws and regulations closely related to the ecological restoration of mines include the Regulations on Land Reclamation, the Regulations on the Protection of the Geological Environment of Mines, and the Measures for the Implementation of the Regulations on Land Reclamation, etc., which all put forward relevant requirements for the monitoring and supervision of the mine environment. For example, Article 23 of the Provisions on the Protection of Mining Geological Environment: the competent department of natural resources at or above the county level shall establish a mining geological environment monitoring system within its administrative area, improve the monitoring network, carry out dynamic monitoring of the mining geological environment, and guide and supervise the mining right holders to carry out mining geological environment monitoring. The owner of the mining right shall regularly report the geological environment of the mine to the competent department of natural resources at the county level where the mine is located, and truthfully submit monitoring data. The competent department of natural resources at the county level shall regularly report the summarized geological environment monitoring data of mines to the competent department of natural resources at the next level. Article 5: The administrative department of natural resources at or above the county level shall establish a land reclamation information management system, use the comprehensive land resources supervision platform, dynamically monitor the land reclamation situation, and timely collect, summarize, analyze and release data information such as land damage and land reclamation within the administrative region.

However, at present, the above operating mechanism still has not landed, resulting in the old account of China's mine ecological restoration problem has not been returned, and the new account is owed every year. It can also be seen from the "China Mineral Resources Report (2020)" and the "2020 Coal Industry Development Report" that about 40% of the old problems have not been treated, but the treatment rate of new ecologically damaged land is only about 40% every year. Therefore, it is imperative to strengthen the supervision of mine ecological restoration.

1.3 There are misunderstandings in the field of mine ecological restoration engineering

The large-scale development of mine ecological restoration project makes the construction team of different good and bad pour into the field of mine ecological restoration. Related engineering construction teams lack systematic, holistic and scientific understanding of mine ecological restoration, coupled with insufficient knowledge reserve and limited technical level, some people think that mine ecological restoration projects are earthworks of digging MATS. For example, they think that covering exposed rocks with soil and filling in subsidence pits is simple and arbitrary, and many cases of failure after restoration are reported. The phenomenon of "one year green, two years yellow, and three years dead" often occurs. If the soil reconstruction is ignored in the process of filling or covering, the water-soil-vegetation will not form a good circulation body, and the vegetation will not live without water and nutrition, and it will be exposed again after 1 to 2 years. When modifying slopes such as dump and stope, if the principle of imitating natural landform is not scientifically applied and the slope is not integrated with the local natural environment, the maintenance cost will be high, and the long-term stability will be poor, resulting in more serious soil erosion and landscape fragmentation [4]. For example, when acid gangue mountain is controlled, fire suppression is not allowed, fire prevention measures are not in place, and the reignition rate is as high as 50%. Figure 1 shows the difference of the landform remodeled into nature in the opencast mine dump. Therefore, the mine ecological restoration project needs scientific and technical support.

1.4 Difficulties in popularizing and applying new technologies

After more than 40 years of practice and research, the majority of scientific researchers have developed a variety of ecological restoration technologies, but the promotion and application of new technologies are limited. At present, China's mine ecological restoration mainly depends on government investment, especially the old account problem, and the social investment is little, so the funds are limited. And some new technologies in order to achieve better repair results, the cost will be increased. For example, compared with soil reconstruction technology, extensive one-time excavation and filling and "layered stripping and staggered backfilling" according to the needs of vegetation growth, the latter investment is slightly larger, and the application enthusiasm of construction enterprises is not high. Another example is the mining side recovery technology of coal mining subsidence, because it is constructed when the ground is not stable, it needs to reserve the subsequent subsidence elevation, which means that the ground is not smooth during the project acceptance and can not meet the traditional acceptance requirements. Construction enterprises and local governments are reluctant to use this technology, and the resulting loss of soil resources is very helpless. Therefore, it is very important to promote the promotion of new technologies, and it is necessary for managers and builders of mine ecological restoration to change their thinking and achieve breakthroughs in investment and policies.

2. Countermeasures for mine ecological restoration in China

2.1 Principles to be followed for mine ecological restoration

Mine ecological restoration is not only the restoration of damaged terrain, simple greening and so on. Mine ecological restoration is a systematic project, which is a complex project integrating damage investigation, design planning and construction. In order to achieve the result of restoring the damaged ecology, it is necessary to have a deep understanding of the connotation of the restoration goal. At the beginning of the planning, it is necessary to clarify the use of land use after restoration, the ecological structure and the ecological function that should be realized. Therefore, the goal setting of mine ecological restoration needs to comply with the following six principles: respect for nature, people-oriented; Adapt to local conditions and conform to the overall regional planning; Safe, efficient and sustainable use; Priority should be given to ecological and environmental benefits, and attention should be paid to economic benefits. Priority is given to restoring cultivated land, grassland and forest land; End treatment is combined with source and process control.

2.2 Strengthen the basic research of mine ecological restoration

The practice of mine ecological restoration for more than 40 years shows that the restoration theory lags far behind the practice, and many restoration cases fail due to lack of scientific restoration, which shows that there is a decoupling phenomenon between theory and practice. In order to repair the ecological environment damage caused by mining, many places have carried out spontaneous restoration and utilization of the damaged land and ecological environment. For densely populated areas with rapid economic development, mine ecological restoration is often promoted faster. However, the basic theory of this field and the principles of restoration technology still need to be deeply studied to support and promote the development of this field.

In the face of complex mining environmental damage problems, restoration methods and technologies need to be innovated, enriched and promoted, and the connotation of scientific restoration should be enriched from the scientific, different, advanced and economic aspects of technology, so as to balance the restoration benefits with funds and policy investment. Although there are many kinds of ecological restoration technologies, there are often some basic common technologies for ecological restoration, which is also the key to ecological restoration. Water is the source of life, soil is the basis of life, and plants are the root of life. Therefore, water, soil and plants are the three major elements of ecological restoration, and the restoration technology centering on these three major elements is the common core technology, namely, geomorphic remodeling, soil reconstruction and vegetation restoration.

(1) Geomorphic remodeling refers to the reconstruction of a new landform in harmony with the surrounding landscape by taking measures such as orderly discharge and land reshaping, aiming at the landform characteristics of the mining area, combined with mining design, mining technology and land damage methods, so as to eliminate and alleviate factors affecting vegetation restoration and land productivity improvement to the maximum extent. In general, Geomorphic remodeling is the basis of land quality restoration in mining area.

(2) Soil reconstruction is the purpose of soil restoration or reconstruction of the damaged land in the mining area. Appropriate reconstruction technology and engineering measures as well as physical, chemical, biological and ecological measures are adopted to reconstruct a suitable soil profile, restore and improve the productivity of the reconstructed soil in a short period of time, and improve the environmental quality of the reconstructed soil.

(3) On the basis of geomorphic remodeling and soil reconstruction, vegetation restoration is based on the selection of pioneer plants and suitable plants and other vegetation configuration, planting and management for different damaged land types and degrees, combined with climate, elevation, slope, slope direction, surface material composition and effective soil layer thickness. To maintain the stability of the restored plant community.

Natural geomorphic remodeling, soil reconstruction and vegetation restoration have become a consensus, but how to define and realize the imitation of natural restoration is still a difficult problem and bottleneck to be solved. At present, there are also many cases due to the imitation of only part of the original ecological environment structure or the imitation is not in place, resulting in unreasonable reconstruction of the landscape, low soil productivity, vegetation population allocation and so on. The author believes that ecological restoration is a gradual and dynamic process, and the restoration scheme should be planned systematically and scientifically according to the original landform characteristics of the mining area, from the aspects of basin connectivity, landscape connectivity, ecological structure stability and so on. Therefore, the basic theories of the three key technologies of geomorphic remodeling, soil remodeling and vegetation restoration should be deeply studied to achieve a major breakthrough in the theory and practice of imitating nature restoration as soon as possible

2.3 Improve the supervision mechanism and implement it

As mentioned above, the Regulations on the Protection of Mining Geological Environment and the Measures for the Implementation of Land Reclamation Regulations have put forward requirements for the monitoring and supervision of mine ecological restoration, but due to the involvement of mining enterprises, the public, restoration enterprises and other multi-party interests, the implementation has not been in place so far. In 2021, the Ministry of Natural Resources plans to complete the inspection of the damage pattern of the national abandoned mines, after which the ecological restoration plan will be formulated and the treatment results will be monitored annually. At the same time, combined with the reform of mining rights, it is planned to strengthen the supervision and management of ecological restoration in production mines, and normalize the annual report system.

Some provinces and cities are trying to establish a big data platform for the supervision of mine ecological restoration to gradually implement the supervision mechanism. If the mechanism operates normally, the old account of ecological restoration will be completed year by year, and the new account will not increase or increase less, and the monitoring and supervision of mine ecological restoration with the help of big data platform is a practical way. Therefore, in the new round of territorial space planning and territorial space ecological restoration planning, self-examination is required to establish a database in the county, and the ecological restoration work will fall to the map spot, including the ecological restoration work in mines. For example, the big data platform for territorial ecological restoration in Shaanxi Province can realize the unified information platform, unified portal and unified management of geological environment monitoring, management and restoration, land reclamation, development management, comprehensive management of territorial space, restoration of mountain, water, forest, farmland, lake and grassland system in Shaanxi Province. At the same time, the implementation of the annual report system of mine ecological restoration is also crucial, and the future focus is to improve its reporting, approval and acceptance system, clarify responsibilities and time requirements of each link, and formulate corresponding incentives and punishment measures.

2.4 Strengthen the supervision and management of production mines, and vigorously promote the technology of mining while repairing

The old account of mine ecological restoration is fixed, according to the unified arrangement of the Ministry of Natural Resources, it is planned to be completed during the "14th Five-Year Plan" period, and the supervision and management of subsequent production mines is the key. If you want to make production mines do not owe new debts, the implementation of the concept of mining while repairing is the key.

In 2013, the author proposed the concept, connotation, basic principle, technical classification and key technologies of "reclamation while mining in Jinggong Coal Mine". Professor Y. P. Chugh, former director of the Central and Western Branch of the National Mining Land Reclamation Research Center of the United States and Professor of Southern Illinois University, also systematically introduced the results in the paper "Mining and recovery Technology of coal subsidence in China" in 2017, that "in the reclamation of coal subsidence area, mining and recovery technology is an advanced technology, which is in a leading position in the world". The Concurrent Mining and Reclamation for Underground Mining (CMR-UM) technology is also named. In 2020, in the article "On the ecological environment of Coal Mine Area", the author further improved the concept, principle and technical system of the integration of coal mine mining and restoration, and redefined the concept of "mining and restoration" of coal mine ecological environment as follows: In view of the ecological and environmental damage caused by coal mining process, closely combined with the mining process, a variety of measures are taken simultaneously to reduce the ecological and environmental damage and control simultaneously, that is, repair while mining, so that it can be used and coordinated with the local ecosystem. The ecological environment of coal mine area "recovery while mining" is based on the concept of "source and process control", rather than the concept of "end management", which is characterized by synchronous management in the mining process. The "recovery" in the concept of "recovery while mining" includes both the narrow "reclamation" and the concept of "restoration". Its core purpose is to timely restore and control the damaged ecological environment, alleviate the contradiction between the exploitation and utilization of mineral resources and environmental protection, and ensure the development of mining activities in the direction of sustainable, circular and green. Relevant research shows that using the technology of mining and recovery to control the subsidence area of coal mining can restore 10% ~ 40% more land. In the future, the mining and recovery technology of Jinggong coal mine will seek a breakthrough in reclamation time, reclamation elevation and reclamation technology in practice. In the aspect of open pit mining, it is emphasized that the integration process of mining, drainage and complex must be implemented, internal drainage as early as possible, boundary management, and reducing the area of external drainage and excessive mining pit.

3. Research conclusion

China is a big country in the development of mineral resources, and the ecological problem of mines is very prominent. Under the background of the country paying more attention to the construction of ecological civilization, practicing the concept of "green mountains are gold mountains and silver mountains" and realizing the "double carbon goal", the ecological restoration of mines is imperative. On the basis of analyzing the main problems of mine ecological restoration in China, the following conclusions are drawn.

(1) Due to the different development stages, administrative departments, research fields and industries, the related concepts and terms of mine ecological restoration are diverse, but the connotation is similar, green development is the hard truth, and the focus is on the cognition of the connotation and the research on the basic theory of ecological restoration.

(2) At present, there are corresponding regulations and requirements for the supervision of ecological damage and restoration of mines, but they have not been well implemented, and it is necessary to strengthen the improvement and implementation of the supervision mechanism, focusing on promoting the normalization of the annual report system and the reporting, approval and acceptance system of relevant information.

(3) Some managers and builders do not have a clear scientific understanding of the mine ecological restoration project, resulting in the failure of the ecological restoration project. It is necessary to establish a correct restoration concept from the perspective of scientific restoration, and carry out scientific construction around the three core technologies of soil reconstruction, geomorphic remodeling and vegetation restoration.

(4) The application and promotion of the new ecological restoration technology is difficult due to the problems of ideological understanding, economic cost and policy support, resulting in the old account of mine ecological restoration in China has not been repaid and the new account is owed. We should focus on improving and promoting the technology and supporting policies of mining while restoration, and promote the high-quality development of mine ecological restoration in China.

At present, mine ecological restoration is in the stage of vigorous development, and there is a lot to be done in the future.


  • ABB 3HAC5498-1 High-Performance Control Module
  • ABB 3HAC5518-1 Industrial Control Module
  • ABB 3HAC5497-1 Industrial Control Module
  • ABB 3HAC7344-1 Mains line filter unit
  • ABB 3HAC7681-1 Process Interface Module
  • ABB 3HAC6428-1/04 high-performance control module
  • ABB 3HAC6157-1 Floppy sign/supply cable
  • ABB 3HAC10847-1 Ethernet on front,Harness
  • ABB 3HAC5566-1 Industrial Communication Bus Cable
  • ABB 3HAC9710-1 Heat exchanger unit
  • ABB IMFECI2 Industrial Control Module
  • ABB IMDS014 Digital Slave Output Module
  • ABB INIT03 Control Module
  • ABB 3HAC031683-004 Cable Teach Pendant 30m
  • ABB HAC319AEV1 High-Performance Control Module
  • ABB UFC092BE01 Binary input module
  • ABB DAPC100 3ASC25H203 Industrial Control Board
  • ABB 57160001-KX DSDO 131 Digital Output Unit
  • ABB 3HAC4776-1/1 Industrial Control Module
  • ABB DSTF610 terminal
  • ABB YB560100-EA S3 Industrial Control Module
  • ABB XO16N1-B20 XO16N1-C3.0 High-Performance Industrial Control Module
  • ABB TU804-1 Programmable Logic Controller (PLC) Module
  • ABB TU515 I/O terminal unit
  • ABB TK516 Connection Cable with Contacts
  • ABB SPCJ4D34-AA Industrial Ethernet I/O System Module
  • ABB SPAD346C Integrated Differential Relay
  • ABB 1SAM101904R0003 SK-11 Signal contact 1NO+1NC
  • ABB SE96920414 YPK112A Communication Module
  • ABB SC610 3BSE001552R1 Submodule Carrier
  • ABB SC513 PLC Analog Input Module
  • ABB SAFT110 Advanced Safety Termination Module
  • ABB RVC6-5A Control Module
  • ABB RB520 Linear Motion Controller Module
  • ABB R1.SW2/3 Industrial Control Module
  • ABB PU517 Controller Automation System
  • ABB PS130/6-75-P Industrial Control Module
  • ABB 3BSE008062R1 PM633 Processor Module
  • ABB L110-24-1 Industrial Control Module
  • ABB IMDSO14 Digital Slave Output Module
  • ABB DSU10 Control Module
  • ABB DSQC627 3HAC020466-001 Advanced Power Supply Module
  • ABB DSQC354 Industrial I/O Module
  • ABB DSQC352 High Performance Input/Output Module
  • ABB 37911-4-0338125 Control Module
  • ABB DSPC172 CPU Module
  • ABB DSBB175 Industrial PLC Expansion Module
  • ABB CR-M4LS Industrial Control Module
  • ABB CI626A 3BSE005029R1 Communication Interface Module
  • ABB BB510 (DC5256) Digital Control Module
  • ABB 61615-0-1200000 High-Precision Industrial Controller
  • ABB 3HNE 00313-1 TILLV.0317 Machine No. 64-25653
  • ABB 3HNA000512-001 Control Module
  • ABB 3HAC025466-001 Industrial Control Module
  • ABB 3HAB8101-8/08Y Industrial Control Module
  • ABB 3BHB003689 Multifunction Controller Module
  • ABB PXBHE65 206-00212 power module
  • ZUNKU 6203-2RS Deep Groove Ball Bearing
  • ZUNKU 6201-2RS Deep Groove Ball Bearing
  • ZYCOM IGLACS01281 Control Module
  • Zygo 8010-0105-02 ZMI-501 Displacement Measurement Interferometer
  • Zygo 1115-801-346 laser head cable
  • ZYGO HSSDC2 TO HSSDC2 CABLE 1115-800-055
  • ZYGO HSSDC TO HSSDC2 CABLE 1115-800-056
  • ZYGO ZMI 4104C Measurement Electronics Board
  • ZYGO ZMI-2002 8020-0211 Measurement Board
  • ZYGO 7702 8070-0102-35 Laser Head
  • ZYGO ZMI 7702 8070-0102-01X Laser Head
  • ZYGO ZMI-4004 4-Axis VME64x Measurement Board
  • ZYGO PC200 CS1115-801-346 Laser interferometer cable
  • ZYGO 8010-0105-01 ZMI Power Supply
  • ZYGO ZMI-2002 8020-0211-1-J Laser system measurement board card
  • ABB 35AE92 control card
  • ABB 200900-004 I/O Adapter PLC Board
  • Siemens 6ES7193-4CA40-0AA0 ET 200S Electronic Module
  • Siemens 6AV2124-2DC01-0AX0 Comfort Panel
  • Siemens 6ES7421-7DH00-0AB0 Digital Input Module
  • Siemens 6ES7350-2AH01-0AE0 Counter Module
  • Siemens 6ES7231-0HC22-0XA0 Analog Input Expansion Module
  • Siemens ET200SP 6ES7193-6PA00-0AA0 server module
  • Siemens 6ES7193-4JA00-0AA0 Terminal Module
  • Siemens 6AG1204-2BB10-4AA3 Ethernet Switch
  • SIEMENS 6GK1105-2AA10 SIMATIC NET series optical switching module (OSM ITP62)
  • Schneider Modicon Quantum 140CPU65260 Unity Processor
  • Schneider Modicon Quantum 140ACO02000 Analog Output Module
  • Schneider Modicon Quantum 140CPS11420 power module
  • Allen-Bradley 1747-CP3 SLC ™ Series of programming cables
  • Kollmorgen S33GNNA-RNNM-00 - Brushless Servo Motor
  • Kollmorgen 6sm56-s3000-g-s3-1325 - Servo Motor
  • Kollmorgen AKM52K-CCCN2-00 - Servo Motor
  • Kollmorgen PSR3-230/75-21-202 - Power Supply
  • Kollmorgen akm24d-anc2r-00 - Servo Motor
  • Kollmorgen AKM22E-ANCNR-00 - Servo Motor
  • Kollmorgen S60300-550 - Servo Drive
  • Kollmorgen B-204-B-21 - Servomotor
  • Kollmorgen AKM21E-BNBN1-00 - Servo Motor
  • Kollmorgen TT2953-1010-B - DC Servo Motor
  • Kollmorgen pa8500 - Servo Power Supply
  • Kollmorgen BDS4A-210J-0001-207C2 - Servo Drive
  • Kollmorgen TTRB1-4234-3064-AA - DC Servo Motor
  • Kollmorgen MH-827-A-43 - Servo Motor
  • Kollmorgen AKM24D-ACBNR-OO - Servo Motor
  • Kollmorgen 00-01207-002 - Servo Disk DC Motor
  • Kollmorgen AKM21C-ANBNAB-00 - Servo Motor
  • Kollmorgen PSR3-208/50-01-003 - Power Supply
  • Kollmorgen 6SM56-S3000 - Servo Motor
  • Kollmorgen DBL3H00130-B3M-000-S40 - Servo Motor
  • Kollmorgen 6SN37L-4000 - Servo Motor
  • Kollmorgen AKM65K-ACCNR-00 - Servo motor
  • Kollmorgen 6SM56-L3000-G - Servo Motor
  • Kollmorgen AKMH43H-CCCNRE5K - Servo Motor
  • Kollmorgen PSR4/52858300 - Power Supply
  • Kollmorgen KBM-79H03-E03 - Direct Drive Rotary Motor
  • Kollmorgen AKM33E-ANCNDA00 - Servo Motor
  • Kollmorgen U9M4/9FA4T/M23 - ServoDisc DC Motor
  • Kollmorgen AKM13C-ANCNR-00 - Servo Motor
  • Kollmorgen AKM43L-ACD2CA00 - Servo Motor
  • Kollmorgen AKM54K-CCCN2-00 - Servo Motor
  • Kollmorgen M-605-B-B1-B3 - Servo Motor
  • Kollmorgen AKD-P00606-NBAN-0000 - Rotary Drive
  • Kollmorgen 6SM-37M-6.000 - Servo Motor
  • Kollmorgen A.F.031.5 - Sercos Interface Board
  • Kollmorgen 918974 5054 - Servo PWM
  • Kollmorgen U12M4 - ServoDisc DC Motor
  • Kollmorgen AKD-B00606-NBAN-0000 - Servo Drive
  • Kollmorgen MV65WKS-CE310/22PB - Servo Drive
  • Kollmorgen 65WKS-CE310/22PB - Servo Drive
  • Kollmorgen EM10-27 - Module