Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Key engineering science and technology strategy for green, intelligent and sustainable development of deep metal mines in China

来源: | 作者:佚名 | 发布时间 :2023-11-28 | 506 次浏览: | Share:

(3) High temperature environment control and cooling technology

The common mine cooling technology at home and abroad includes two categories: non-artificial refrigeration and artificial refrigeration. Non-artificial cooling technology mainly includes mine ventilation, heat source isolation, rock precooling, goaf filling and other methods, among which mine ventilation is the most widely used. However, the mine ventilation cooling cost is high and the ventilation efficiency is low. In addition, for the mine with more serious heat damage, the non-artificial cooling technology is difficult to meet the cooling requirements, and artificial cooling measures must be adopted at the same time. At present, artificial cooling technology is widely used in metal mines, including water cooling system and cold cooling system. The water cooling system produces cold water through the refrigeration unit, and then through the high and low pressure heat exchanger and air cooler, the ventilation system is input into the underground air flow cooling, and sent to the working face to cool down. This system is actually the application of air conditioning technology in underground mines. The ice cooling system sends granular ice or mud ice produced on the ground to the underground ice melting pool through wind or water power, and uses the working face return water to spray the ice melting, and sends the cold water after the ice melting to the working face for cooling through the air cooler or spray cooling. In general, non-artificial cooling technology and artificial cooling technology are passive cooling technology. Engineering practice shows that these two cooling technologies not only have high cooling cost, but also have unsatisfactory cooling effect in deep Wells.

In order to effectively solve the problem of deep well cooling, active cooling technology must be developed, focusing on the following two directions:

① Deep well high-temperature rock insulation technology. The high temperature environment of deep Wells is mainly caused by the heat radiation of high temperature rock formations. The development of new and efficient heat insulation materials, new technologies and new processes can isolate the high temperature heat sources of rock formations. On this basis, artificial refrigeration and cooling technology can play a more obvious cooling effect.

② Deep well geothermal development technology. Geothermal itself is a natural energy source, and the existing cooling technology is a passive measure, treating geothermal as a kind of disaster prevention. If heat exchange technology is used to develop and utilize geothermal resources in rock strata in the process of deep mining, the combination of deep well mining and deep geothermal development can greatly offset the cooling cost, thus opening up a subversive and economic and effective technical way for the cooling of deep mining Wells.

(4) Improving technology

Lifting is as important a link in the mining process as rock excavation. Multi-rope friction or winding hoists are widely used in metal mines. After entering deep mining, the steel wire rope is continuously lengthened and thickened, which not only increases the lifting load, greatly reduces the effective lifting capacity, but also due to the large change in the length of the tail rope, resulting in excessive changes in the tension of the lifting steel wire rope, resulting in broken wire damage, which has become the main factor restricting the safety of friction lifting. According to domestic and foreign statistics, the maximum single-stage lifting height of friction and winding elevators is only about 1800 m and 3000 m respectively. Greater lifting height must be multi-stage lifting, which greatly increases the cost of equipment and greatly reduces the efficiency of upgrading.

When the lifting height exceeds 3000 m or 4000 m, the large load, large inertia and large torque caused by the rope lifting technology will be an unsolved problem. To this end, it is necessary to develop cordless vertical lifting technology, such as linear motor drive lifting technology and magnetic levitation drive lifting technology. Cordless vertical lifting technology has the advantages of small size, flexible movement, high efficiency and unrestricted lifting height, which is suitable for deep well lifting. At present, the technology and equipment in this area are still in the preliminary stage, and more in-depth innovative research and scientific experiments are needed in the future to develop practical technologies and products. It is suggested that China should focus on the research and development of such upgrading technology and equipment in the future.

Fourth, green intelligent mining mode

The traditional shallow mining mode and mining method are not suitable for deep high stress field, high well temperature, rock mass structure change and complex geological conditions. In order to meet the requirements of green intelligent mining of deep metal mines and improve the level of automatic and efficient mining of deep Wells, it is necessary to fundamentally change the existing mining mode and process technology.

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card