Three steps in the thermal power energy conversion process Step 1: Convert chemical energy into heat energy. Burning fossil fuels in a boiler produces heat energy, which is absorbed by water and turned into water vapor. Step 2: Convert heat energy into mechanical energy. The thrust produced by the hot steam drives the turbine to spin. Step 3: Convert mechanical energy into electricity. Using the rotation of the turbine to induce the rotor of the generator to rotate, electrical energy is generated by cutting the magnetic field lines.
In the process of thermal power generation, the coal is sent to the coal hopper between the coal bunker through the electromagnet and the coal crusher, and enters the coal mill for grinding. The hot air pumped into the pulverized coal through the air preheater is hit to the coarse and fine separator. The coarse and fine separator sends the qualified pulverized coal to the powder bunker, and finally the pulverized coal is sent to the burner by the pulverizer to the boiler for combustion.
Thermal power plants Thermal power plants are plants that use combustible materials (China's thermal power plants are mainly coal-fired) as fuel to produce electric energy. Its basic production process is: the fuel heats water to generate steam when it is burned, the chemical energy of the fuel is converted into heat energy, the steam pressure drives the turbine to rotate, the heat energy is converted into mechanical energy, and then the turbine drives the generator to rotate, the mechanical energy is converted into electrical energy. A modern thermal power plant is a large and complex plant that produces electricity and heat. According to different dimensions such as fuel, prime mover, steam pressure and installed capacity, thermal power plants can be divided into many types. With the continuous improvement of thermal power technology, the construction and operation of thermal power plants are also gradually adapting to the social development requirements of low energy emission reduction.
Steam turbine power generation: first the fuel is sent into the boiler, at the same time into the air, the boiler is injected into the chemical treatment of water, the use of fuel combustion released heat energy to make water into high temperature, high pressure steam, drive the turbine rotation and work to drive the generator power generation. The cogeneration method is to use the exhaust steam (or special extraction steam) of the prime mover to heat industrial production or residential life. Gas turbine power generation: The compressed air is pressed into the combustion chamber by the compressor, mixed with the injected fuel and atomized for combustion, forming high-temperature gas into the gas turbine to expand and do work, promote the blade rotation and drive the generator to generate electricity. Diesel engine power generation: the fuel injection pump and injector will be high pressure fuel injection into the cylinder, forming a fog, mixed with air combustion, promote the diesel engine rotation and drive the generator to generate electricity. Five systems of thermal power plant Fuel system: complete fuel delivery, storage, preparation of the system. Coal-fired power plants are equipped with coal unloading facilities, coal yards, coal loading facilities, coal silos, coal feeders, coal mills and other equipment; Oil power plant is equipped with oil tanks, heaters, oil pumps, oil pipelines and other equipment. Combustion system: mainly composed of boiler combustion chamber, air supply device, coal delivery device, ash and slag discharge device. The main function is to complete the combustion process of the fuel, release the energy contained in the fuel in the form of heat energy, and use it to heat the water in the boiler. The main processes include flue gas flow, ventilation flow, ash discharge and slag flow, etc. Steam water system: mainly by the feed pump, circulation pump, feed water heater, condenser and so on. Its function is to use the combustion of fuel to turn water into high temperature and high pressure steam, and to circulate water. The main processes include soda flow, recharge water flow, cooling water flow and so on. Electrical system: mainly by the power plant main wiring, turbine generator, main transformer, distribution equipment, switchgear, generator lead line, battery DC system and communication equipment, lighting equipment and so on. The basic function is to ensure power supply to the load or power system according to power quality requirements. The main process includes power supply process and plant power supply process. Control system: mainly composed of boiler and its auxiliary system, turbine and its auxiliary system, generator and electrical equipment, auxiliary system. The main work flow includes steam turbine start-stop, automatic speed up control flow, boiler combustion control flow.
Power generation: Multi-generation power generation technology Cogeneration: Cogeneration is the use of heat engines or power stations to produce electricity and useful heat at the same time. Cogeneration is the thermodynamic efficient use of fuel, which uses the waste heat after power generation for industrial manufacturing or uses the waste heat of industrial manufacturing for power generation to achieve the purpose of maximum energy utilization. Since the efficiency of traditional generators is only about 30%, up to 70% of the fuel energy is converted into useless heat, steam and electricity symbiosis can reuse more than 30% of the heat energy in industry, so that the fuel utilization rate reaches more than 60%. Thermoelectric triple generation: A thermoelectric triple supply system is a device and its peripherals that simultaneously generates and supplies heat, electricity and cold from an energy center to an area. In addition to power generation, the steam turbine power generation system can be used for production process and domestic heating, and part of the electricity or heat can be converted through the refrigeration system to meet the cold demand of production and life. The system not only makes the primary energy get the step utilization, but also improves the utilization rate of related equipment, which is an energy-saving and economic energy supply mode. When the supply area is small (such as a cluster of buildings), the internal combustion engine can also be used to generate electricity, and its exhaust and cooling water can be used for heating and cooling.
email:1583694102@qq.com
wang@kongjiangauto.com