With the continuous breakthrough of basic and clinical research, our understanding of immunotherapy is also deepening, and the indications of immunotherapy are also expanding. From the main position of leukemia at the beginning, to non-Hodgkin lymphoma, multiple myeloma, and then to autoimmune diseases, immunotherapy has entered the 2.0 era of more precision, combination, and broad spectrum.
3. Cure of Rare Diseases
With no errors or off-target effects, the modification of mutated genes through gene-editing technology is expected to produce predictable beneficial effects and even achieve one-time cures for certain genetic diseases. Looking back on the development of gene therapy for nearly 20 years, it is only in recent years that we have truly ushered in the era of gene therapy and seen the hope of curing rare diseases in one go.
genetherapy, as a subversive medical technology, has been able to introduce foreign normal genes into target cells to correct or compensate for diseases caused by defects and abnormal genes, so as to achieve the purpose of treating congenital genetic diseases. Today, more than 2,500 gene therapy clinical trials are underway worldwide, and gene therapy has become a must-have for global pharmaceutical research and development companies.
In mid-2018, the FDA announced that it would continue to vigorously advance gene therapy development and issued six new guidelines that establish a policy framework for how genetic products are developed, reviewed by regulators, and reimbursed. It also identifies hot areas for human gene therapy, including hemophilia, retinal disorders and rare diseases.
In 2019, the treatment of a variety of rare diseases will enter the clinic, and gene therapy has officially entered the stage of rapid development after nearly 20 years. More and more small and medium-sized gene therapy startups have broken ground, and traditional pharmaceutical giants such as Pfizer, Novartis, GlaxoSmithKline have also laid out the gene therapy field. In China, some startups involved in gene editing, as well as some gene therapy projects are expected to enter the clinical stage in 2019.
4. Gene Big Data
On April 15, 2003, an international team of scientists from six countries announced the completion of the human genome map. This $3 billion research project, hailed as the "moonshot" of life sciences, has laid a solid foundation for humanity to uncover its own mysteries. The mapping of the human genome has become an important milestone in the history of human exploration of its own mysteries, and is considered by many analysts to mark the beginning of the biotechnology century.
Only more than a decade later, with the development and maturity of technology, the cost of complete genome sequencing has been gradually reduced from $3 billion in the year to hundreds of thousands of dollars, thousands of dollars or even lower, and there are many consumer genetic testing products for the public on the market. In addition to the well-known non-invasive prenatal genetic testing, neonatal genetic disease screening and other applications, individual genetic testing can also lock in individual pathological genes to achieve advance prevention and treatment.
Through genetic testing of individuals, it is possible to predict a variety of diseases and even provide deeper insights into individual behavioral characteristics. For example, in individual genetic testing products, through the analysis of the DNA data of individual samples, the risk of cancer, metabolic diseases, mental diseases, etc., can also be interpreted to interpret the individual's drug adaptability, sports talent, alcohol consumption and other information. As millions or even tens of millions of individuals around the world have completed the interpretation and analysis of personal genomic data, there have been some more compelling emerging technologies based on DNA information, such as DNA criminal detection, new drug prediction, and revolutionary progress in these fields. We have also entered a revolutionary era brought about by DNA data.
5. Nucleic Acid Drugs
In the field of new drug research and development, targeted therapy for target proteins has become the mainstream, gene therapy for DNA mutations is also in full swing, and as a bridge between genes and proteins, mRNA is getting more and more attention in recent years. In addition, scientists have also found that there is a unique gene silencing mechanism in eukaryotic cells, which can resist the invasion of foreign substances, protect the stability of genetic information, and regulate various functions of the organism, also known as RNA interference (RNAi) phenomenon.
The RNAi mechanism was first discovered by professors Andrew Z. Fire and Craig C. Mello in 1998, was named the top ten scientific achievements by the journal Science in 2002, and was awarded the Nobel Prize in Physiology or Medicine in 2006. The discovery of RNAi has greatly broadened the sources and development directions of human drugs. Nowadays, oligonucleotide drugs dominated by siRNA (small interfering RNA) and miRNA (tiny RNA), and ribonucleic acid drugs dominated by mRNA therapeutics, mRNA vaccines and CRISPRRNA constitute nucleic acid drugs.
Email:wang@kongjiangauto.com