Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

The life sciences are starting a third revolution. Remember these three key words

来源: | 作者:佚名 | 发布时间 :2023-12-07 | 312 次浏览: | Share:

The coronavirus pandemic has infected more than 100 million people worldwide and killed more than 2.2 million. Will the coronavirus disappear, or will it continue to coexist with humans? Can vaccine development keep up with virus mutation? What will the future life science revolution look like?

In response to the above questions, "Intellectuals", Scientific Exploration Awards and Tencent News jointly launched the New Year special program "2021 Creator's Ultimate three Questions" series live, specially invited the executive president of the Peking University Institute of Frontier Interdisciplinary Sciences, academician of the Chinese Academy of Sciences Tang Chao, Ouyang Qi, professor of the School of Physics of Peking University and academician of the Chinese Academy of Sciences, and Li Dong, researcher of the Institute of Biophysics of the Chinese Academy of Sciences and winner of the Scientific Exploration Award, shared their thoughts. The discussion was moderated by senior media writer Yang Yan.

Did you get this interesting, rich science feast? Take a look at the notes taken by The Intellectual.

How long will the 01 virus live with humans?

As the black swan event with the greatest impact on the world in the past year, the COVID-19 epidemic has naturally become the focus of discussion. Why is a small virus causing global panic, and when can we get rid of this cunning virus?

"Viruses are nature's natives." Tang Chao pointed out that viruses existed in nature much earlier than humans. Moreover, they have strong vitality and can adapt well to a variety of natural environments and changes. As a result, humans have been living with viruses and bacteria since the beginning of time, most commonly influenza and colds. When a new virus infects the human body, there may be a relatively violent immune response, but from a scientific point of view, this is normal.

In response, Ouyang said that humans are not unable to cope with the virus. In human development, natural evolution is the main way to fight against viruses. The other is to rely on modern science, through scientific means to understand the virus, and then design the corresponding drugs and vaccines against the virus. For example, compared with the SARS virus in 2003, although there are some changes in the new coronavirus, human understanding of the virus and the means of prevention and treatment are also evolving, he said.

Li Dong analyzed from the perspective of the survival instinct of the living body. Li Dong said that the ultimate goal of viruses as living beings is to let themselves survive, and after coming to human society, its evolutionary goal is to coexist with human society. Perhaps the arrival of a new virus will make humans ill-adapted, resulting in a higher mortality rate. But with the development of technologies such as vaccines, people are finally able to respond to outbreaks of infectious diseases. At the same time, Li Dong also stressed that the protection of any vaccine has a certain probability, depending on the immune system response of the person, and vaccination does not mean complete insulation from the virus. But with the protection of vaccines, it is possible for humans to build a barrier of herd immunity.

As for how to deal with the epidemic and how the epidemic will develop in the next step, the three scholars all showed a relatively optimistic attitude. Tang Chao said that the mutation of the virus is a means to adapt to various environments, and the virus has mutated, and people's immunity is constantly adjusting.

The RNA vaccine that has been outstanding in this outbreak has also been fully affirmed by three scholars. "RNA vaccines are a very powerful weapon," Tang said, adding that after the development of the new coronavirus epidemic, RNA vaccines will be more mature and vaccine development will be faster. Ouyang said that even if the virus finds new characteristics, mRNA vaccines can quickly change in response to virus mutations. Li Dong also said that the advantage of RNA vaccines is that they can accelerate iterative vaccine development according to the genetic sequence variation of the virus, which opens up a new technological path for human beings to better respond to public health events in the future.

02 Design life is still in its very early stages

In recent years, technology has advanced by leaps and bounds, giving us more and more tools to fight diseases and viruses, including strategies to deal with global outbreaks such as the novel coronavirus. At the same time, the scientific community is always alert to the "double-edged sword" role of science and technology, hoping that science and technology can benefit mankind while avoiding greater trouble. For example, synthetic biology has received much attention in recent years.

Synthetic biology is a new subject with the development of molecular biology. It can be used to synthesize some complex functions in natural life, or even to design life artificially. In the live broadcast, three scholars discussed the challenges of designing life and how to avoid the risks brought about by the development of technology.

  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module
  • GE IS410STCIS2A IS400STCIS2AFF Industrial Control Module
  • GE DS200DCFBG2BNC DS200DCFBG1BNC DC Feedback Board
  • GE VME5565 VMIVME-5565-11000 332-015565-110000 P Reflective Memory
  • GE VMIVME-7807 VMIVMME-01787-414001 350-00010078007-414001 D module
  • GE IS220PDOAH1A 336A4940CSP2 Discrete Output Module
  • GE VMIVME-4150 Analog Output Module
  • GE WESDAC D20 PS Industrial Power Module
  • GE 369B1860G0031 servo drive module
  • GE 369B1859G0021 Input/Output Module
  • GE 208D9845P0008 Motor Management Relay
  • GE IS420UCSCH1A-F.V0.1-A Independent Turbine Controller
  • GE D20EME10BASE-T 820-0474 Ethernet Interface Module
  • GE DS200DCFBG2BNC MRP445970 DC Feedback Board
  • GE IC800SSI228RD2-EE servo motor controller
  • GE IS200JPDMG1ACC S1AT005 Digital Input/Output (I/O) Module
  • GE IS200TSVCH1AED servo input/output terminal board
  • GE IS200TTURH1CCC S1DF00Z Terminal Turbine Plate
  • GE IS200TSVCH1ADC S1CX01H servo input-output board
  • GE IS200TRPGH1BDD S1C5029 Trip Solenoid Valve Control Board
  • GE IS220YAICS1A L Analog Input/Output Module
  • GE UCSC H1 IS420UCSCH1A-F-VO.1-A Controller Module
  • GE UCSC H1 IS420UCSCH1A-B Communication Processing Module
  • GE IC697VDD100 Digital Input Module
  • GE V7768-320000 3509301007768-320000A0 Controller Module
  • GE IS410TRLYS1B Relay Output Module
  • GE IS415UCVGH1A V7666-111000 VME Control Card
  • GE IC800SSI216RD2-CE servo motor controller
  • GE VMIVME-5565-010000 332-01565-010000P Reflective Memory
  • GE IC695ALG508-AA Analog Input Module
  • GE IC660EPM100J Power Monitoring and Control Module
  • GE RS-FS-9001 362A1052P004 Redundant Fan System Module
  • GE IS220UCSAH1AK independent processor module
  • GE 369-HI-0-M-0-0-0-E Motor Management Relay
  • GE CIFX50-C0 interface board
  • GE SR469-P5-H-A20-T Motor Management Relay
  • GE WES5120 2340-21005 power module
  • GE WES5120 2340-21003 Control Module
  • GE D20MIC10BASE-T 820-0756 Ethernet Module
  • GE WES13-3 5167-001-0210 Mechanical Relay Output Module
  • GE WES13-3 2508-21001 Control Board Module
  • GE D20ME 526-2005-216943 Input/Output Module