Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Study on ecological restoration status and treatment countermeasures of abandoned mines left over from history

来源: | 作者:佚名 | 发布时间 :2023-12-27 | 559 次浏览: | Share:

2.3 Restoration Mode

The problems of mine ecological environment include landscape type destruction, environmental quality type destruction and biological type destruction. The traditional restoration model mainly focuses on landscape recurrence restoration (eliminating geological hazards and vegetation coverage), and less takes into account environmental quality restoration (controlling water, air and soil pollution) and biological restoration (restoring biological communities and species). At present, the mode of mine environmental treatment and restoration is simple, resulting in the economic and social benefits are not obvious, and the investment and return have not formed a virtuous cycle.

Adhere to the priority of ecological restoration and management, adopt the "development, governance", according to the type of mine and regional location of the ecological environment state index and the degree of damage to the surrounding environment, classified policies, regional control, hierarchical governance, step by step. On the basis of the landscape reproduction model, we should expand a variety of potential restoration models, and transition from land reclamation to a diversified development trend that takes into account the benefits of all aspects. At present, there are not many examples of mine parks, country parks and creative and cultural industry models in China, and they have not formed a scale and industrial chain, which can become the future direction of operation. Seize the opportunity of the country to vigorously implement the rural revitalization strategy, make full use of various policies to help and benefit agriculture, and repair and manage abandoned mines well while building new rural areas.

2.4 Restoration Works

In recent years, the implementation effect of the mine rehabilitation project has made obvious progress, but there are still problems such as unreasonable restoration plans and goal setting, lack of scientific and normative, low restoration standards for most management projects, low participation in funds, less acceptance standards and norms, and uneven acceptance quality.

Local governments and restoration enterprises should work out different types of mine restoration plans according to factors such as the type of mine pollution, the degree of ecological environmental damage, and human geography, with phased indicators and the completion time of the overall restoration target, and conduct strict review with high standards to avoid loopholes in the plans. Mine restoration funds are strictly managed as a whole, and their use is supervised and inspected by means of "random sampling of inspection objects in the supervision process, random selection of law enforcement inspectors, and timely disclosure of random inspection and investigation results to the public" (referred to as "double random, one public") to ensure that all funds are reasonably used in restoration projects. Revise and improve the acceptance standards of the project, hire qualified and experienced mine restoration related institutions, third-party design institutes and mine management companies to carry out the one-by-one acceptance inspection of the mine treatment plan, medium-term objectives and ecological restoration after treatment, and put forward targeted improvement plans for the problems and deficiencies found in the acceptance, so as to promote rectification through acceptance and avoid inadequate treatment measures. The phenomenon of substandard treatment projects occurs.

2.5 Repair Techniques

Mining has caused serious damage to topography and landform, and there are subsidence areas, tailings ponds and waste discharge fields covering a large area, etc. As of 2018, a total of 1.2×l04 ground collapse disasters have occurred in abandoned mines in China, and the solid waste stock is 4.96×1010t, with high construction technical requirements. Compared with water pollution and air pollution, mine restoration has less attention, less research on related technologies, and the existing technologies are relatively simple, mainly in geological environment management, secondary disaster prevention and control, vegetation restoration and land reclamation. In the "National Soil Pollution Survey Announcement" published in 2014, 1,672 soil points in 70 mining areas accounted for 33.4% of the exceeded points, and the main pollutants were cadmium, arsenic, lead and polycyclic aromatic hydrocarbons. The soil pollution control technology was weak, the plant survival rate was low, and no integrated control system was formed. In recent years, some new technologies have achieved good results, but the cost is high and the application is limited. In 2013, the Technical Code for the Protection and Restoration of the Ecological Environment in Mines (Trial) issued the development of industry standards, which did not enforce and play its due role in guiding technical requirements for the protection and restoration of the ecological environment, including waste dumps, open-pit stopes, tailings ponds, special roads for mining areas, mining industrial sites, subsidence areas, gangue yards, polluted sites, etc. The regulations on pollution prevention and control involving air, water and soil are relatively simple, and there are no more detailed technical guidelines and norms for one aspect, and no new technical norms have been issued since then.

  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module
  • GE IS410STCIS2A IS400STCIS2AFF Industrial Control Module
  • GE DS200DCFBG2BNC DS200DCFBG1BNC DC Feedback Board
  • GE VME5565 VMIVME-5565-11000 332-015565-110000 P Reflective Memory
  • GE VMIVME-7807 VMIVMME-01787-414001 350-00010078007-414001 D module
  • GE IS220PDOAH1A 336A4940CSP2 Discrete Output Module
  • GE VMIVME-4150 Analog Output Module
  • GE WESDAC D20 PS Industrial Power Module
  • GE 369B1860G0031 servo drive module
  • GE 369B1859G0021 Input/Output Module
  • GE 208D9845P0008 Motor Management Relay
  • GE IS420UCSCH1A-F.V0.1-A Independent Turbine Controller
  • GE D20EME10BASE-T 820-0474 Ethernet Interface Module
  • GE DS200DCFBG2BNC MRP445970 DC Feedback Board
  • GE IC800SSI228RD2-EE servo motor controller
  • GE IS200JPDMG1ACC S1AT005 Digital Input/Output (I/O) Module
  • GE IS200TSVCH1AED servo input/output terminal board
  • GE IS200TTURH1CCC S1DF00Z Terminal Turbine Plate
  • GE IS200TSVCH1ADC S1CX01H servo input-output board
  • GE IS200TRPGH1BDD S1C5029 Trip Solenoid Valve Control Board
  • GE IS220YAICS1A L Analog Input/Output Module
  • GE UCSC H1 IS420UCSCH1A-F-VO.1-A Controller Module
  • GE UCSC H1 IS420UCSCH1A-B Communication Processing Module
  • GE IC697VDD100 Digital Input Module
  • GE V7768-320000 3509301007768-320000A0 Controller Module
  • GE IS410TRLYS1B Relay Output Module
  • GE IS415UCVGH1A V7666-111000 VME Control Card
  • GE IC800SSI216RD2-CE servo motor controller
  • GE VMIVME-5565-010000 332-01565-010000P Reflective Memory
  • GE IC695ALG508-AA Analog Input Module
  • GE IC660EPM100J Power Monitoring and Control Module
  • GE RS-FS-9001 362A1052P004 Redundant Fan System Module
  • GE IS220UCSAH1AK independent processor module
  • GE 369-HI-0-M-0-0-0-E Motor Management Relay
  • GE CIFX50-C0 interface board
  • GE SR469-P5-H-A20-T Motor Management Relay
  • GE WES5120 2340-21005 power module
  • GE WES5120 2340-21003 Control Module
  • GE D20MIC10BASE-T 820-0756 Ethernet Module
  • GE WES13-3 5167-001-0210 Mechanical Relay Output Module
  • GE WES13-3 2508-21001 Control Board Module
  • GE D20ME 526-2005-216943 Input/Output Module