Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Application and research progress of biological enzymes in pulp and paper making process

来源: | 作者:佚名 | 发布时间 :2024-01-15 | 191 次浏览: | Share:

1. The importance of biotechnology for pulp and paper making

The pulp and paper industry uses plant fibers as raw materials in the production process, such as wood and non-wood. These raw materials are rich in cellulose, hemicellulose, resin and pectin and other organic, inorganic extracts and minerals, etc., so in the pulping and papermaking often need to use physical or chemical means to remove or retain lignin and other waste cellulose, resulting in biotechnology and pulping and papermaking process between inextricably linked. In fact, the application of biotechnology in pulping and papermaking can be traced back to 105 AD, but it was not until the 1960s that pulping and papermaking gradually entered the era of industrialization, coupled with the continuous development and improvement of bioengineering, genetic engineering and enzyme engineering technology, the industrialization of biological enzymes has brought great opportunities to the development of pulping and papermaking industry. And gradually penetrate into the various processes of pulp and paper, to a large extent to promote the rapid development of the paper industry.

2, the application of biological enzymes in the process of pulping and papermaking

2.1 Biological pulping

The so-called biological pulping is actually the use of biological enzymes to degrade raw materials, and further combined with mechanical and chemical means to further separate the fiber raw materials, this process is called biological pulping. In general, the biological enzymes used in different raw materials are not the same. For example, phloem fibers contain a lot of glia, so it is necessary to select pectinase to decompose the glia and release cellulose. Straw pulp and wood pulp are rich in lignin, so it is necessary to choose a combination of lignin degradation, chemical pulping and mechanical pulping to complete the pulping work [1]. It can be seen that the basic process of biological pulping is: wood chip - enzyme treatment - chemical or mechanical pulping, general chemical pulping or biological pulping advantages are lower energy consumption, low alkali consumption, light environmental pressure and mild performance.

2.2 Biological Bleaching

Hemicellulase and lignin-degrading enzymes are mainly used in pulping bleaching, among which hemicellulase includes xylanase and polynose-degrading enzyme. The purpose of biological bleaching is to use as little chemical bleach as possible to improve the performance of pulping, thereby reducing the pollution caused by bleach. In general, xylitase can effectively improve the whiteness of pulping and reduce the amount of bleach and waste water pollution in pulping bleaching pretreatment, while not adversely affecting the viscosity of the pulp and the strength of the paper. Compared with the bleaching process using hydrogen dioxide or hydrogen peroxide, the production cost can be significantly reduced. However, in terms of its mechanism, xylosin only plays a role in the bleaching process, and can not directly replace the chemical bleaching agent. The development of xylosin-assisted bleaching is actually an enzyme that is stable and can show biological activity under high temperature resistance and alkaline environment. The main reason is that the temperature of sulfate can reach 95℃ after cooking, and its PH value can reach or even exceed 13. Under such conditions, dellignification basically does not change. Therefore, in order to promote the enzyme can be directly into the pulp after cooking or washing without reducing the temperature and PH value of the pulp, it is necessary to use the high temperature resistance and alkaline ability of xylose enzyme, so xylose enzyme is a promising biological agent.

2.3 Enzymatic beating

The role of enzymes is to achieve the goal of reducing the energy consumption of beating with the help of cellulose modification. At present, the biological enzymes widely used in the process of pulp and paper are: pectinase, cellulase, xylose enzyme, mannanase, laccase and arabinose hydrolase.

Taking cellulase as an example, the application of cellulase in pulp and paper is often the first to act on the amorphous region of cellulose, but the crystallization region is not very sensitive to cellulase. The use of cellulase, hemicellulase and xylosamase to carry out pre-treatment before beating can effectively reduce energy consumption and steam consumption, and achieve the goal of improving paper performance [2].

At present, the price of pure enzymes is slightly high, so it is necessary to find the right adjuvant to improve the efficiency of enzyme use and achieve the goal of reducing energy consumption. However, if the correct use of enzyme treatment in the pulping and papermaking process can not only change the performance of the slurry, but also ensure the normal operation of the paper machine is a major research focus at present.

2.4 Enzymatic deinking

Traditional chemical deinking techniques can no longer meet the requirements of laser printing or copying of office waste paper, and may even cause environmental pollution. The deinking technology using biological enzyme method is gradually mature, and has been tested in laboratory and factory. It is an effective and widely applicable deinking method. At present, the enzymes commonly used in waste paper deinking mainly include cellulase, hemicellulase, esterase, amylase, pectinase and lignin degrading enzyme. Among them, hemicellulase and cellulase are the most used [3].

  • GE Fanuc - A16B-3200-0020 Circuit Board Industrial Automation Core Component
  • GE IS420UCSBH3A - Advanced Industrial Control Module
  • GE Fanuc - IC693APU300J PAC Systems RX3i PLC Controller
  • GE FANUC - IC693MDL654 Modular Control System
  • GE Fanuc - DS200GDPAG1AEB Industrial Control Module for Advanced Automation
  • GE Fanuc - IC694ACC310 Filler Module Advanced Process Control Solution
  • GE Fanuc - IC200MLD750 Output Module Versamax PLC
  • GE IS220PSCAH1A - Advanced Power Control Module for Turbine Systems
  • GE Fanuc - IC220STR001 Direct Motor Starter for Precision Control
  • GE Fanuc - IC698CPE020-GP Slot Rack Card High Performance Control Module
  • GE FANUC - IC693MDL240 Modular Control Module
  • GE Electric - IC693PBM200-FE Master Module Industrial Automation Control Core Component
  • GE URRHV - Power Supply Advanced Industrial Control
  • GE DS6800CCID1D1D - Industrial I/O Interface Module
  • GE MULTILIN - EPM 9650 POWER QUALITY METER PL96501A0A10000
  • GE Electric - Fanuc IC697CMM742-KL Advanced Type 2 Ethernet Interface Module
  • GE Fanuc - IS200TBAIH1C Analog Input Terminal Board
  • GE FANUC - IC600FP608K IC600LX624L Memory Module for Industrial Automation
  • GE Fanuc - 531X135PRGAAM3 Programmer Card Board
  • GE IC200PER101E - Power Supply
  • GE IS420ESWBH3A - High-Speed Industrial Ethernet IONet Switch
  • GE Electric - EPSCPE100-ABAG Standalone PACSystems RSTI-EP Controller
  • GE IS200ICBDH1ACB - Advanced Industrial Control PCB for Critical Applications
  • GE DS200FCGDH1BAA - Precision Gate Distribution & Status Card for Industrial Control Systems
  • GE Fanuc - IC660HHM501R Portable Monitor for Industrial Automation
  • GE DS200IMCPG1C - Power Supply Interface Board for Industrial Controls
  • GE FANUC - IC695ALG508 Advanced Control Module for Industrial Automation
  • GE VM-5Z1 - PLC Module Programmable Logic Controller
  • GE FANUC - IC754CKF12CTD QuickPanel Control Industrial-grade HMI for Precision Automation
  • GE UR - 9GH UR9GH CPU High-Performance Control Module for Industrial Automation
  • GE IS220PGENH1A - Generator Power Unit (I/O)
  • GE Electric - IS220PD0AH1A Industrial Control System I/O Pack Module
  • GE IC694ALG221B - High-Performance Bus Expansion Cable for Enhanced PLC Connectivity
  • GE IC693MDL752 - High-Performance Negative Logic Output Module
  • GE DS200VPBLG1AEE - High-Performance Circuit Board
  • GE Electric SR745-CASE - 745-W2-P5-G5-HI-T Excellent Value
  • GE IS200TTURH1CBB - High-Performance Programmable Logic Controller Module
  • GE A06B-0227-B100 - Servo Motor Precision
  • GE 8021-CE-LH - High-Performance AC/DC Coil Contactor
  • GE FANUC - IC693BEM340 High-Speed Ethernet Controller Module
  • GE DS200SDCIG2AGB - Advanced DC Power Supply & Instrumentation Board for Industrial Control
  • GE FANUC - IC693CHS397E CPU Base Advanced Control Module for Industrial Automation
  • GE UR7BH - Relay Module High Performance Relay for Industrial Control Applications
  • GE FANUC - A17B-3301-0106 CPU MODULE
  • GE Fanuc - HE693ADC415E Drive Module
  • GE IS200VAICH1D - Analog Input Module for Industrial Control Solutions
  • GE Fanuc - DS200SHCAG1BAA High-Performance Turbine Energy Shunt Connector Board
  • GE Fanuc - IS215VCMIH2CC | Communication Card
  • GE IC690ACC901 - Mini Converter Kit Efficient Communication Solution
  • GE Electric - DS3800HCMC Gas Turbine Daughter Board For Enhanced Control & Efficiency
  • GE Electric - FANUC IC200ALG320C Analog Output Module
  • GE Electric - (GE) IS420UCSBH3A REV D
  • GE IC693MDL646B - Advanced Input Module for Industrial Control Solutions
  • GE IC693MDL730F - Advanced Digital Input Module for Industrial Automation
  • GE IC200ALG240 - Analog Input I/O
  • GE IC660BBD020Y - | DC Source I/O Block
  • GE Electric - IC698ACC735 Shielded Single Slot Faceplate
  • GE Fanuc - IC200MDL730 Discrete Output Module
  • GE IS200VAOCH1B - VME Analog Output CD for MARK VI
  • GE IC200ALG328E - High Precision Analog Output Module
  • GE Fanuc - IC200CHS001 A Cutting-edge VersaMax PLC
  • GE UR6DH - Digital I/O Module Advanced Power System Communication
  • GE Fanuc - IC695CHS007 Universal Control Base
  • GE VMIVME-2540-200 - Intelligent Counter & Controller
  • GE Fanuc - DS200LDCCH1ARA Advanced Mark VI Circuit Board for Industrial Automation
  • GE DS3800HMPG - Cutting-Edge CPU Card for Advanced Industrial Control
  • GE IS220PAICH1B - 10 Analog Inputs & 2 Analog Outputs
  • GE DS200TCQAG1BHF - Analog Input/Output Card Precision Control for Industrial Automation
  • GE FANUC - 531X139APMASM7 Micro Application Board for Industrial Control
  • GE DS3800NPPC - Circuit Board Precision Control in Industrial Automation
  • GE IC200UEX626 - 6-Channel Analog Expansion Module for Advanced Process Control
  • GE IC693PWR331D - Advanced Power Supply for Industrial Automation
  • GE DS200TBQBG1ACB - Advanced RST Analog Termination Board
  • GE Fanuc - DS200TBCAG1AAB Advanced PLC for Industrial Automation
  • GE FANUC - DS200LRPAG1AGF Industrial Line Protection Module
  • GE IC693MDL654 - Advanced Logic Input Module for Industrial Control Systems
  • GE Industrial - Controls IC695LRE001B Transmitter Module
  • GE DS3800HUMB1B1A - Universal Memory Board
  • GE IC660BBD021W - Advanced 3-Wire Sensor Block for Industrial Control Systems
  • GE FANUC - IC694APU300 High-Speed Counter Module
  • GE IC694ACC300 - Input Simulator Module Advanced Control Solutions
  • GE FANUC - IC687BEM713C Advanced Bus Transmitter Module for Industrial Automation
  • GE IS200TGENH1A - Advanced Turbine Control Board for Gas and Steam Turbines
  • GE IC693MDL654F - Advanced Modular PLC Input Module for Industrial Automation
  • GE IS200AEPAH1BMF-P - | IS210BPPCH1AD I/O Pack Processor Board
  • GE IS230TRLYH1B - New in Box | Industrial Control Module
  • GE 489-P5-HI-A20-E - Industrial Generator Management Relay
  • GE Electric - (GE) IS200IVFBG1AAA Fiber Optic Feedback Card for Industrial Automation
  • GE Electric - IC693PWR322LT Advanced Industrial Power Supply
  • GE Fanuc - IC200ALG432 Analog Mixed Module VersaMax
  • GE Fanuc - IC693ALG392 Precision Analog Output for Industrial Control Systems
  • GE Fanuc - IC695ACC402 Evergreen Controller Advanced PLC Solution for Industrial Automation
  • GE IC693ACC300D - Input Simulator Module
  • GE 46-288512G1-F - Advanced Industrial Control Module
  • GE IC755CSS12CDB - High-Performance Control Module
  • GE DS200TCCAG1BAA - High-Performance PLC PC Board
  • GE IC3600TUAA1 - Advanced Industrial Control Module
  • GE 8810 - HI TX-01 Brand New Advanced Industrial Control Module
  • GE 750-P5-G5-D5-HI-A20-R-E - Relay
  • GE Fanuc - IC200MDL330 Network Interface Unit Advanced Networking for Industrial Automation
  • GE Fanuc - IC676PBI008 Waterproof Input Block
  • GE Circuit - Board 304A8483G51A1A
  • GE YPH108B - Measurement Board
  • GE UR6AH - Digital I/O Module Industrial Control
  • GE IC200ALG264E - High Precision Current Analog Input Module
  • GE IS200TRLYH2C - Relay Output Module with Contact Sensing Terminal Board; Manufacturer GE-FANUC
  • GE IC693ALG442B - Advanced Programmable Logic Controller Module
  • GE IC693ACC301 - Lithium Battery Replacement Module
  • GE Fanuc - DS200PTBAG1A Termination Board Advanced Control Module
  • GE IS200VCRCH1BBB - Mark VI Circuit Board
  • GE IS200UCVEH2A - High-Performance Exciter Bridge Interface BOARD for Industrial Automation
  • GE IS220PDIOS1A - Mark VI Control Module
  • GE IS210AEBIH3BEC - Advanced Input/Output Board for MKVI Control Systems
  • GE 6KLP21001X9A1 - AC Variable Frequency Drive
  • GE 531X123PCHACG1 - Advanced Power Supply Interface Card
  • GE Electric - STXKITPBS001 Profibus Interface Module for Industrial Control Systems
  • GE DS200TCRAG1AAA - Industrial Grade Relay Output Board for Enhanced Control Systems
  • GE UR9NH - CPUUR CPU Module
  • GE Electric - DS200TCQFG1ACC
  • GE Electric - Fanuc IC200ALG260H Analog Input Module Precision & Reliability in Automation Solutions
  • GE DS200SLCCG3RGH - Industrial Control Module
  • GE DS3800NMEC1G1H - Industrial Motor Control Module
  • GE Fanuc - 531X113PSFARG1 | Mark VI Circuit Board
  • GE Fanuc - IC693ALG392C Analog Output Module Precision Control in Industrial Automation
  • GE IC693ALG220G - Advanced Input Analog Module for Industrial Automation
  • GE DS200DTBCG1AAA - Industrial Control System's Reliable Core
  • GE F31X301DCCAPG1 - Control Board Advanced Industrial Automation Solution
  • GE Electric - (GE) IS200AEAAH1AAA Mark VI Printed Circuit Board