Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Carbon emission reduction path of coal chemical industry

来源: | 作者:佚名 | 发布时间 :2024-03-05 | 616 次浏览: | Share:

In the opening article of our series "China Accelerating towards Carbon Neutrality", we imagined a carbon-neutral world in 2050 dominated by new energy elements such as electric vehicles, hydrogen steelmaking, photovoltaic power generation, and green energy storage. Achieving this vision also means that the world needs to reduce net man-made carbon dioxide emissions by about 45% by 2030 compared with 2010. To achieve "net zero emissions" by 2050. In the face of the dual challenges of target and time, the road to carbon neutral transition needs to be started.

In the opening article of our series "China Accelerating towards Carbon Neutrality", we imagined a carbon-neutral world in 2050 dominated by new energy elements such as electric vehicles, hydrogen steelmaking, photovoltaic power generation, and green energy storage. Achieving this vision also means that the world needs to reduce net man-made carbon dioxide emissions by about 45% by 2030 compared with 2010. To achieve "net zero emissions" by 2050. In the face of the dual challenges of target and time, the road to carbon neutral transition needs to be started. While countries are competing to carry out specific research and implementation work, China also took the lead in proposing the goal of "carbon peak and carbon neutrality" in the general debate of the seventy-fifth session of the United Nations General Assembly. The United Nations Sustainable Development Goal 13 "Climate action" is also one of McKinsey's social responsibility priorities in China. At this key juncture, McKinsey officially launched China's large-scale carbon neutral transition research project in China. With the help of McKinsey's rich experience in global sustainable development research, combined with comprehensive understanding and profound insight into Chinese society, industries and enterprises, Mobilize the knowledge of more than 100 people around the world to carry out research on carbon neutral transition trends, countermeasures and technologies across major industrial sectors, hoping to make a small contribution to China's early achievement of carbon neutrality goals.

As the fourth article in this series, this paper will continue to study carbon neutral transition with coal chemical industry as a sample. Following this, we will publish a series of articles covering high-carbon emission industries such as oil and gas and power, covering many topics such as carbon emission reduction path analysis, emerging technology discussion, investment cost forecast, international practice sharing, and explore the latest trends in traditional carbon emission reduction process innovation, carbon capture, utilization and storage (CCUS), and new carbon emission reduction technologies such as hydrogen energy. In the process of continuing to promote this research, we are very welcome experts from all walks of life colleagues, you can put forward valuable comments in the message area, you can also directly contact the team. We look forward to working with all sectors of society to advance the path of carbon neutral transition in a green China.

Necessity of carbon emission reduction in coal chemical industry in China

The coal chemical industry has long been a major carbon emitter in the coal industry chain, contributing about 10% of China's total carbon emissions in 2015. Due to its resource endowment, China's chemical industry uses more high-carbon coal as feedstock than any other country. Taking synthetic ammonia and methanol as an example, natural gas is the main raw material for synthetic ammonia and methanol in most countries, while about 80% of synthetic ammonia and methanol in China is made from coal (Figure 1), which leads to the carbon intensity of China's coal chemical industry is higher than that of other countries. Coal to hydrogen 1 kg (synthetic ammonia and methanol feedstock gas) will emit about 11 kg of carbon dioxide, if natural gas to hydrogen, carbon emissions will be reduced by half. According to McKinsey's internal analysis, to meet the 1.5C target, the chemical industry needs to reduce carbon emissions by more than 90 per cent by 2050.

Synthetic ammonia carbon reduction path

Because the production process is similar and the emission reduction grips overlap, we will take synthetic ammonia as an example to further clarify each carbon reduction grips in this article.

Demand-side management: The main downstream use of synthetic ammonia is nitrogen fertilizer production, and about 90% of synthetic ammonia is processed into nitrogen fertilizer. Nitrogen fertilizer use in China is projected to have the potential to decline by 40 percent by 2050, driven by a combination of reduced arable land and more efficient fertilizer use.

a. Reduction of cultivated land: China's total cultivated land area is expected to continue the downward trend in the future, from 2 billion mu to nearly 1.8 billion mu, an estimated decline of 10%. Long-term over-cultivation has led to the decline of cultivated land quality, currently China's 2 billion mu of cultivated land has 4% of polluted land, 17.8% of low arable land and more than 80 million mu of unstable farmland, recuperation, return to forest and grass, rotation and fallow is imperative. At the same time, along with the process of urbanization, the rural population is expected to move out further in the future, resulting in some arable land wastage.

  • GE Hydran M2-X Transformer Condition Monitoring Device
  • FOXBORO P0916VL control module
  • FOXBORO P0916VC High Performance Terminal Cable
  • FOXBORO P0916WG system module
  • FOXBORO P0972ZQ interface channel isolation 8-input module
  • FOXBORO P0973BU high-frequency fiber optic jumper
  • FOXBORO P0926MX Splasher Confluencer
  • FOXBORO P0961S connector module
  • FOXBORO P0903NU system module
  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module