Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

The direction of chemical intelligent manufacturing | artificial intelligence is not reliable

来源: | 作者:佚名 | 发布时间 :2023-11-24 | 254 次浏览: | Share:

In the past two years, due to the outstanding performance of artificial intelligence in some fields (not industrial fields), some people have begun to be optimistic that China is overtaking the curve of manufacturing and industrialization through "Internet +" and artificial intelligence. Can there really be such optimism?

In 2007, when I was writing my doctoral thesis, the first sentence of the first chapter of the introduction was, "In the Report of the 16th National Congress (2002), it was clearly proposed that 'industrialization is driven by informatization, and industrialization is promoted by informatization'." Later, the 17th National Congress (2007) put forward: "industrialization and information integration"; For this two, the state also set up the "Ministry of Industry and Information Technology" in 2008, indicating that the state has a deep understanding of and attention to this development strategy. Later, the 18th National Congress (2012) proposed: "the deep integration of the two". Until now, in the upsurge of intelligent manufacturing, the integration of the two is still the "foundation" of the Ministry of Industry and Information Technology. More than a decade has passed, but the two reforms are still being mentioned, which shows that this matter is not easy, and the progress is not as smooth as the Government thinks.

At present, there is a lot of talk about intelligent manufacturing in the discrete industry, but there is little talk about intelligent manufacturing in the chemical industry. So, chemical intelligent manufacturing, in which direction is it developing?

Chemicals are already on the automation fast track

The chemical industry has long realized the primary intelligent system - automated control. Due to the continuity of the chemical process and the large-scale of the device, and the huge investment in the device (billions of dollars of investment), the chemical industry (including oil refining, petrochemical) has long put forward very high requirements for process automation, and began to use DCS for process control in the 1970s. Automation improves the stability and safety of chemical production, and it is also easy to increase the profit margin of the factory (increasing profits is the direct motivation for enterprises to adopt new technologies in the market economy environment). The current level of technology can make more than 80% of the production workshops and operations of chemical production unmanned, mainly in some of the processing and transportation of solids to achieve automation is more difficult. Large chemical equipment production workshop unmanned is a normal phenomenon, relying on pumps, compressors to achieve the flow of materials in the closed pipeline system, relying on a variety of temperature, pressure, liquid level, flow control to achieve the automatic operation of matter and energy in each operating unit.

Technically feasible or optimal, does not mean the best economic benefits. In particular, some small devices, completely using automatic control system system unit cost is high; When labor costs are low, manual operation is preferred. Therefore, the automation rate of the chemical industry in the real world is determined by the technical level and economic benefit (investment cost, labor cost).

Traditional AI is not suitable for the chemical industry

The core of traditional artificial intelligence (big data, machine learning) is to summarize and extract rules from historical data, so as to predict the future. Its theoretical basis is that the running data contains all the important hidden information of the system, and the rules and knowledge of the system can be mined directly from the data without studying the mechanism of the problem.

This kind of artificial intelligence is not suitable for the chemical industry, and the intelligent production of the chemical industry is extremely limited. For three reasons:

1. The operation mechanism and mathematical model of chemical plant are relatively complete. Chemical engineering, as an engineering discipline with more than 100 years of development, has a relatively complete knowledge system. Chemical plant as a manual design system, the designer has been clear about the inherent characteristics and mechanism of the device when designing, and has known the mathematical model of the device. So there is no need to use artificial intelligence to mine and discover knowledge. Even when the mechanism is unclear or the boundary is uncertain, some conventional and traditional data analysis methods are sufficient to deal with the problems in chemical industry.

2. As a strictly controlled system, chemical equipment has a lot of data but monotonous, and the information is too low to mine knowledge. Because the chemical process is strictly controlled by various control systems and the production is stable, the data generated is a lot but the distribution is narrow, and it is impossible to use artificial intelligence to extract rules or knowledge from this big data with little information. 100 or 10,000 identical pieces of data contain the same amount of information as one piece of data.

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card