Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

The construction of green mines and the development of green mining is the only way for China's mining industry to achieve high-quality development

来源: | 作者:佚名 | 发布时间 :2023-11-27 | 376 次浏览: | Share:

The accumulation of solid waste occupies a large amount of land and destroys forests, vegetation and landforms; The disordered discharge of waste rock and tailings will clog up river channels and pollute water bodies, which will do great harm to mine ecological environment and human health and survival. Therefore, it is of great significance for environmental protection to realize large-scale resource utilization of waste, digest and dispose of accumulated waste, and greatly reduce future emissions and storage. "As far as possible, we can recycle and effectively use the waste that is inevitably generated in situ. For example, in underground mines, the waste rock generated by mining and the tailings generated by beneficiation are used to fill the underground goaf, which will play an important role in maintaining the stability and safety of the underground stope, while avoiding and controlling the pollution and harm caused by waste discharge to the environment and ecology."

"Mine and surrounding environmental pollution and ecological damage caused by mineral resources development, the traditional mining model adopts the method of end-treatment, which has a large workload and poor effect." To this end, it is necessary to carry out activities to protect the ecological environment of mines, such as land reclamation, afforestation and prevention of soil erosion, in parallel with mining. If the ecological environment is seriously damaged after the mining is finished, the cost will be too high and the effect of restoring the natural ecological environment will not be achieved." CAI Meifeng said.

2. Mine ecological environment protection and restoration must be carried out simultaneously

Before mining, the possible impact and damage to the environment and ecosystem caused by mining excavation should be fully assessed, including the surface natural and ecological environment system, vegetation system, hydrological system, building facilities, etc. It is necessary to avoid the possible influence and damage through scientific design, and protect the natural and ecological environment of the mining area from the source.

CAI Meifeng pointed out that the open-pit mining should always put the stability maintenance of stope and dump slope in the most important position, and take effective monitoring and control measures to avoid the occurrence of slope landslide, tipping, collapse, debris flow and other disasters. These accidents will cause devastating damage to the natural ecological environment, vegetation, building facilities and people's living environment. In the process of underground mining, it is necessary to use filling method and other means to deal with the goaf well, effectively monitor and control the mine pressure activity, and avoid the occurrence of serious environmental damage disasters such as roof collapse, roof collapse, surface subsidence and breaking through caused by the existence and instability of goaf.

"Open-pit mining has a large impact on the environment and can cause many types of disasters. From the perspective of environmental protection and ecology, open-pit mining should be changed to underground mining as much as possible." CAI Meifeng said.

Land reclamation is the main measure of mine ecological restoration, which serves the two goals of environmental remediation and agricultural land protection and restoration.

CAI Meifeng said that land reclamation technology can be mainly divided into physical engineering technology, chemical technology and biotechnology three categories. Physical engineering technology is the main means of mine environment and land regulation. Including: surface shaping engineering. Some measures such as filling, backfilling, stacking and leveling are adopted to sort out and repair the terrain and landform of the reclaimed land, so that it can meet the requirements of the natural environment of the mining area and the use of the reclaimed land. Dig deep and pad shallow works. The large area of local water subsidence is dug deep for fish farming, lotus root planting, etc., and the excavated soil is used to pad the small area of subsidence to form agricultural land. The simple planting agriculture before subsidence will be transformed into ecological agriculture combining planting and breeding. Tailings reclamation project. Tailings belong to inorganic substances, do not have basic fertility, can be treated with soil covering, soil mixing and other methods for land reclamation, vegetation greening. There are also some necessary engineering measures, such as slope cutting and unloading, hanging nets and anchor rods, building retaining walls and other slope stability measures, cutting drainage to reduce soil and water loss and covering measures.

The main function of land reclamation chemical technology is to improve soil. For acidic soil, industrial wastes such as tailings and coal ash are used to reduce soil acidity. Alkaline soil or soil with high ph value, using humic acid and other substances to improve; Use organic fertilizer or inorganic fertilizer such as nitrogen, phosphorus, potassium to promote soil ripening and increase soil fertility; For toxic tailings and waste and contaminated land, topsoil cover is generally carried out first.

  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module
  • GE IS410STCIS2A IS400STCIS2AFF Industrial Control Module
  • GE DS200DCFBG2BNC DS200DCFBG1BNC DC Feedback Board
  • GE VME5565 VMIVME-5565-11000 332-015565-110000 P Reflective Memory
  • GE VMIVME-7807 VMIVMME-01787-414001 350-00010078007-414001 D module
  • GE IS220PDOAH1A 336A4940CSP2 Discrete Output Module
  • GE VMIVME-4150 Analog Output Module
  • GE WESDAC D20 PS Industrial Power Module
  • GE 369B1860G0031 servo drive module
  • GE 369B1859G0021 Input/Output Module
  • GE 208D9845P0008 Motor Management Relay
  • GE IS420UCSCH1A-F.V0.1-A Independent Turbine Controller
  • GE D20EME10BASE-T 820-0474 Ethernet Interface Module
  • GE DS200DCFBG2BNC MRP445970 DC Feedback Board
  • GE IC800SSI228RD2-EE servo motor controller
  • GE IS200JPDMG1ACC S1AT005 Digital Input/Output (I/O) Module
  • GE IS200TSVCH1AED servo input/output terminal board
  • GE IS200TTURH1CCC S1DF00Z Terminal Turbine Plate
  • GE IS200TSVCH1ADC S1CX01H servo input-output board
  • GE IS200TRPGH1BDD S1C5029 Trip Solenoid Valve Control Board
  • GE IS220YAICS1A L Analog Input/Output Module
  • GE UCSC H1 IS420UCSCH1A-F-VO.1-A Controller Module
  • GE UCSC H1 IS420UCSCH1A-B Communication Processing Module
  • GE IC697VDD100 Digital Input Module
  • GE V7768-320000 3509301007768-320000A0 Controller Module
  • GE IS410TRLYS1B Relay Output Module
  • GE IS415UCVGH1A V7666-111000 VME Control Card
  • GE IC800SSI216RD2-CE servo motor controller
  • GE VMIVME-5565-010000 332-01565-010000P Reflective Memory
  • GE IC695ALG508-AA Analog Input Module
  • GE IC660EPM100J Power Monitoring and Control Module
  • GE RS-FS-9001 362A1052P004 Redundant Fan System Module
  • GE IS220UCSAH1AK independent processor module
  • GE 369-HI-0-M-0-0-0-E Motor Management Relay
  • GE CIFX50-C0 interface board
  • GE SR469-P5-H-A20-T Motor Management Relay
  • GE WES5120 2340-21005 power module
  • GE WES5120 2340-21003 Control Module
  • GE D20MIC10BASE-T 820-0756 Ethernet Module
  • GE WES13-3 5167-001-0210 Mechanical Relay Output Module
  • GE WES13-3 2508-21001 Control Board Module
  • GE D20ME 526-2005-216943 Input/Output Module