Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

To realize coordinated and sustainable development of mine ecology and economy

来源: | 作者:佚名 | 发布时间 :2023-11-28 | 322 次浏览: | Share:

With the development of China's mining resources integration trend, the traditional model of "small scale, large quantity and low efficiency" will definitely be eliminated and reformed, and the existing sand and gravel mining enterprises need to take the high-quality construction of green mines as an opportunity to accelerate the whole process of energy saving and environmental protection.

China's non-metallic sand mining industry needs to strengthen the efficient application of energy saving and environmental protection measures to promote the early realization of high-quality development of the industry.

Measures for efficient utilization of mining and production resources

First of all, the sand and gravel mine to green mining as the overall requirements, combined with clean production and green storage technology, to achieve the source and process of green and modern scientific and technological overall layout, put an end to the traditional extensive development model and production methods. Secondly, through technical means, improve the level of resource utilization efficiency of sand and stone, with the level of high-tech equipment to improve unit production efficiency, for sand mining and utilization, to eat dry squeeze, for the production process of the side material, residual material to achieve 100% utilization, do not leave tailings, all become resource utilization, such as: Stone powder collection can be used for the production of cement, concrete, mud powder for new wall materials or environmental protection engineering construction materials around the mining area; For the main, common and associated resources of the mining area, comprehensive exploration should be done in the early stage, comprehensive mining and utilization plans should be set up, and the principle of high quality and optimal use and cascade utilization should be taken as the general goal to improve the comprehensive benefit. Finally, the topsoil and residue produced in the mining process should be used 100% in combination with environmental management, pipe ditch backfilling, original landform restoration, land reclamation, etc. For a large amount of sediment in the waste water of sand and gravel production, the process of sludge cleaning and dehydration is adopted to separate the water and sediment and use them as resources respectively, and the sediment is used for the surrounding ecological utilization. Sand and stone deposits come from ecological resources and should be fully utilized.

Energy saving and energy efficient application measures

According to the requirements of the country to promote the green and low-carbon transformation of energy development, China's energy supply mode has also changed to the direction of green and efficient, safe and stable, close to users, and local materials. The sand and gravel mining industry needs to establish an energy low-carbon application layout plan and establish a whole-process energy consumption monitoring and accounting system. The use of the Internet of Things, information technology and automation technology management system to achieve the purpose of energy saving, electricity saving and money saving, which is also an inevitable trend of technological development.

How to reasonably plan to reduce the energy consumption in the process of mining, production and overall operation, and realize the synchronous operation of energy saving, electricity saving and economic benefits is not only a matter that the management of mining enterprises must consider, but also a matter that the industry must pay attention to, and the government and competent departments must do a good job. It is very important to strengthen energy saving and efficiency increase in mining area. For example, the selection of advanced energy-saving and efficient construction machinery, one-time investment long-term benefit; In the automatic operation, the energy recovery system is added, and the potential energy generation technology can be used to save energy for the mining area with large drop. In addition, gravity potential energy can be continuously recovered in the mining process to improve energy recycling efficiency. For example, in the top-down conveying process of mineral materials, with the increase of mineral materials on the conveyor belt, the gravity of the mineral itself gradually increases along the conveyor belt, so that the conveyor belt pulls the drum to accelerate rotation, so that the gravity potential energy can be recovered through the drum to drive the generator to generate electricity. In addition, in the selection of mining technology, new blasting technology and measures to increase the efficiency of blasting energy are adopted. According to the natural conditions of different mining areas, solar energy, wind energy, geothermal energy, etc., can be selected to achieve multi-energy complementarity; Promote the planning of transportation links and the green and low carbonization of transportation means, such as the construction of closed pipeline transportation from mining areas to transfer stations or the adoption of new energy transportation means; In addition, the mining area can also use photoelectric conversion to achieve LED automatic lighting and domestic electricity, conditional enterprises can also make full use of biomass energy as a supplementary energy in the mining area, for heating or canteen gas supply. In short, it is necessary to adopt comprehensive measures and means to form a global efficient energy application model in mining areas.

  • ABB BC25 Controller Module
  • ABB 3HAB8859-1/03A Industrial Control Module
  • ABB 3HAB9271-1/01B Robotic Control Interface Module
  • ABB 3HAC5498-1 High-Performance Control Module
  • ABB 3HAC5518-1 Industrial Control Module
  • ABB 3HAC5497-1 Industrial Control Module
  • ABB 3HAC7344-1 Mains line filter unit
  • ABB 3HAC7681-1 Process Interface Module
  • ABB 3HAC6428-1/04 high-performance control module
  • ABB 3HAC6157-1 Floppy sign/supply cable
  • ABB 3HAC10847-1 Ethernet on front,Harness
  • ABB 3HAC5566-1 Industrial Communication Bus Cable
  • ABB 3HAC9710-1 Heat exchanger unit
  • ABB IMFECI2 Industrial Control Module
  • ABB IMDS014 Digital Slave Output Module
  • ABB INIT03 Control Module
  • ABB 3HAC031683-004 Cable Teach Pendant 30m
  • ABB HAC319AEV1 High-Performance Control Module
  • ABB UFC092BE01 Binary input module
  • ABB DAPC100 3ASC25H203 Industrial Control Board
  • ABB 57160001-KX DSDO 131 Digital Output Unit
  • ABB 3HAC4776-1/1 Industrial Control Module
  • ABB DSTF610 terminal
  • ABB YB560100-EA S3 Industrial Control Module
  • ABB XO16N1-B20 XO16N1-C3.0 High-Performance Industrial Control Module
  • ABB TU804-1 Programmable Logic Controller (PLC) Module
  • ABB TU515 I/O terminal unit
  • ABB TK516 Connection Cable with Contacts
  • ABB SPCJ4D34-AA Industrial Ethernet I/O System Module
  • ABB SPAD346C Integrated Differential Relay
  • ABB 1SAM101904R0003 SK-11 Signal contact 1NO+1NC
  • ABB SE96920414 YPK112A Communication Module
  • ABB SC610 3BSE001552R1 Submodule Carrier
  • ABB SC513 PLC Analog Input Module
  • ABB SAFT110 Advanced Safety Termination Module
  • ABB RVC6-5A Control Module
  • ABB RB520 Linear Motion Controller Module
  • ABB R1.SW2/3 Industrial Control Module
  • ABB PU517 Controller Automation System
  • ABB PS130/6-75-P Industrial Control Module
  • ABB 3BSE008062R1 PM633 Processor Module
  • ABB L110-24-1 Industrial Control Module
  • ABB IMDSO14 Digital Slave Output Module
  • ABB DSU10 Control Module
  • ABB DSQC627 3HAC020466-001 Advanced Power Supply Module
  • ABB DSQC354 Industrial I/O Module
  • ABB DSQC352 High Performance Input/Output Module
  • ABB 37911-4-0338125 Control Module
  • ABB DSPC172 CPU Module
  • ABB DSBB175 Industrial PLC Expansion Module
  • ABB CR-M4LS Industrial Control Module
  • ABB CI626A 3BSE005029R1 Communication Interface Module
  • ABB BB510 (DC5256) Digital Control Module
  • ABB 61615-0-1200000 High-Precision Industrial Controller
  • ABB 3HNE 00313-1 TILLV.0317 Machine No. 64-25653
  • ABB 3HNA000512-001 Control Module
  • ABB 3HAC025466-001 Industrial Control Module
  • ABB 3HAB8101-8/08Y Industrial Control Module
  • ABB 3BHB003689 Multifunction Controller Module
  • ABB PXBHE65 206-00212 power module
  • ZUNKU 6203-2RS Deep Groove Ball Bearing
  • ZUNKU 6201-2RS Deep Groove Ball Bearing
  • ZYCOM IGLACS01281 Control Module
  • Zygo 8010-0105-02 ZMI-501 Displacement Measurement Interferometer
  • Zygo 1115-801-346 laser head cable
  • ZYGO HSSDC2 TO HSSDC2 CABLE 1115-800-055
  • ZYGO HSSDC TO HSSDC2 CABLE 1115-800-056
  • ZYGO ZMI 4104C Measurement Electronics Board
  • ZYGO ZMI-2002 8020-0211 Measurement Board
  • ZYGO 7702 8070-0102-35 Laser Head
  • ZYGO ZMI 7702 8070-0102-01X Laser Head
  • ZYGO ZMI-4004 4-Axis VME64x Measurement Board
  • ZYGO PC200 CS1115-801-346 Laser interferometer cable
  • ZYGO 8010-0105-01 ZMI Power Supply
  • ZYGO ZMI-2002 8020-0211-1-J Laser system measurement board card
  • ABB 35AE92 control card
  • ABB 200900-004 I/O Adapter PLC Board
  • Siemens 6ES7193-4CA40-0AA0 ET 200S Electronic Module
  • Siemens 6AV2124-2DC01-0AX0 Comfort Panel
  • Siemens 6ES7421-7DH00-0AB0 Digital Input Module
  • Siemens 6ES7350-2AH01-0AE0 Counter Module
  • Siemens 6ES7231-0HC22-0XA0 Analog Input Expansion Module
  • Siemens ET200SP 6ES7193-6PA00-0AA0 server module
  • Siemens 6ES7193-4JA00-0AA0 Terminal Module
  • Siemens 6AG1204-2BB10-4AA3 Ethernet Switch
  • SIEMENS 6GK1105-2AA10 SIMATIC NET series optical switching module (OSM ITP62)
  • Schneider Modicon Quantum 140CPU65260 Unity Processor
  • Schneider Modicon Quantum 140ACO02000 Analog Output Module
  • Schneider Modicon Quantum 140CPS11420 power module
  • Allen-Bradley 1747-CP3 SLC ™ Series of programming cables
  • Kollmorgen S33GNNA-RNNM-00 - Brushless Servo Motor
  • Kollmorgen 6sm56-s3000-g-s3-1325 - Servo Motor
  • Kollmorgen AKM52K-CCCN2-00 - Servo Motor
  • Kollmorgen PSR3-230/75-21-202 - Power Supply
  • Kollmorgen akm24d-anc2r-00 - Servo Motor
  • Kollmorgen AKM22E-ANCNR-00 - Servo Motor
  • Kollmorgen S60300-550 - Servo Drive
  • Kollmorgen B-204-B-21 - Servomotor
  • Kollmorgen AKM21E-BNBN1-00 - Servo Motor
  • Kollmorgen TT2953-1010-B - DC Servo Motor
  • Kollmorgen pa8500 - Servo Power Supply
  • Kollmorgen BDS4A-210J-0001-207C2 - Servo Drive
  • Kollmorgen TTRB1-4234-3064-AA - DC Servo Motor
  • Kollmorgen MH-827-A-43 - Servo Motor
  • Kollmorgen AKM24D-ACBNR-OO - Servo Motor
  • Kollmorgen 00-01207-002 - Servo Disk DC Motor
  • Kollmorgen AKM21C-ANBNAB-00 - Servo Motor
  • Kollmorgen PSR3-208/50-01-003 - Power Supply
  • Kollmorgen 6SM56-S3000 - Servo Motor
  • Kollmorgen DBL3H00130-B3M-000-S40 - Servo Motor
  • Kollmorgen 6SN37L-4000 - Servo Motor
  • Kollmorgen AKM65K-ACCNR-00 - Servo motor
  • Kollmorgen 6SM56-L3000-G - Servo Motor
  • Kollmorgen AKMH43H-CCCNRE5K - Servo Motor
  • Kollmorgen PSR4/52858300 - Power Supply
  • Kollmorgen KBM-79H03-E03 - Direct Drive Rotary Motor
  • Kollmorgen AKM33E-ANCNDA00 - Servo Motor
  • Kollmorgen U9M4/9FA4T/M23 - ServoDisc DC Motor
  • Kollmorgen AKM13C-ANCNR-00 - Servo Motor
  • Kollmorgen AKM43L-ACD2CA00 - Servo Motor
  • Kollmorgen AKM54K-CCCN2-00 - Servo Motor
  • Kollmorgen M-605-B-B1-B3 - Servo Motor
  • Kollmorgen AKD-P00606-NBAN-0000 - Rotary Drive
  • Kollmorgen 6SM-37M-6.000 - Servo Motor
  • Kollmorgen A.F.031.5 - Sercos Interface Board
  • Kollmorgen 918974 5054 - Servo PWM
  • Kollmorgen U12M4 - ServoDisc DC Motor
  • Kollmorgen AKD-B00606-NBAN-0000 - Servo Drive