Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

The deep integration of digitalization and greening promotes the low-carbon development of new infrastructure

来源: | 作者:佚名 | 发布时间 :2023-12-05 | 320 次浏览: | Share:

Set sail on the 14th Five-Year Plan, China's ecological civilization construction has entered a critical period from quantitative change to qualitative change.  New infrastructure is not only an important area of energy conservation and carbon reduction, but also the driving force that enables thousands of industries to achieve the goal of "double carbon". Over the years, information infrastructure has actively promoted green development, strengthened the application and promotion of green technologies, and the energy consumption per unit of information traffic has been significantly reduced. However, with the acceleration of the digital development of the economy and society, the new infrastructure has entered a period of rapid development, and its total energy consumption has increased significantly, and the green transformation is facing greater pressure. Therefore, the "14th Five-Year Plan" period to continue to promote low-carbon development is an important direction of new infrastructure construction.

I. The overall energy consumption of new infrastructure increased rapidly during the 14th Five-Year Plan period

In recent years, the field of information and communication has actively adopted advanced technologies, vigorously promoted energy conservation, emission reduction and green transformation, and the energy use efficiency of information infrastructure has continued to improve, and the green energy conservation work has achieved remarkable results. According to statistics, the electricity consumption per unit of information traffic in the communications industry has dropped from 54.4 kWh/TB in 2017 to 31.7kWh/TB in 2020, a decrease of up to 42% in three years. Among them, the energy efficiency of base stations has been greatly improved with the large-scale deployment of 5G networks and the application of related energy-saving technologies. The test results of Theil System Laboratory of China Academy of Information and Communications Technology on all mainstream base stations in the current 4G/5G live network show that the energy efficiency of 5G base stations is 12 times that of 4G base stations in the case of peak throughput. The power usage efficiency (PUE) of data centers has also continued to decline, and the PUE of advanced green data centers in the industry has been reduced to about 1.1, reaching the world's leading level.

Although the energy consumption per unit of information flow continues to decline and the related energy efficiency has been greatly improved, as people enter the rapidly developing digital society, the demand for network, computing and storage resources is growing rapidly, and the new infrastructure, especially the information infrastructure, is still facing outstanding pressure to save energy and reduce consumption during the "14th Five-Year Plan" period.

Take data centers, which are big energy users in information infrastructure. In recent years, China's data center demand has grown at an average annual rate of 30%, and the total scale of China's data center racks has exceeded 5 million. With the expansion of the scale of data centers, the overall energy consumption of data centers has maintained rapid growth. According to estimates, from 2017 to 2020, the annual power consumption of data centers above designated size in China's information and communication field will increase by 28% annually. In 2020, it will reach 57.67 billion kWh, the highest increase in recent years (see Figure 1). According to the average annual growth rate of 30% in the number of data center racks in the future, it is expected that by the end of the "14th Five-Year Plan", its annual electricity consumption will double on the basis of 2020. This poses a huge challenge to the green and low-carbon development of data centers.

For example, communication base stations are the second largest energy consumer of information infrastructure. According to the statistics of China's three major basic telecom operators, the energy consumption of China's communication network continues to grow during the "13th Five-Year Plan" period, and the power consumption of China's communication base stations will reach 46.58 billion kWh in 2020.

Especially after the commercial use of 5G in 2019, the energy consumption brought by large-scale deployment of 5G base stations has a faster growth rate, and the year-on-year growth rate in 2019 and 2020 has reached 28% and 19%, respectively (as shown in Figure 2). According to the total number of 5G base stations reached 3.72 million stations at the end of the "14th Five-Year Plan", and the power consumption of a single station was 2kW, by the end of the "14th Five-Year Plan", the annual power consumption of 5G base stations was about 81.5 billion kWh. Taking into account the further deepening of 2G/3G base station frequency reduction, energy saving and emission reduction work and the construction of 4G/5G common station sites, the total power consumption of communication base stations is expected to reach 105 billion kWh in 2025 according to the average annual energy consumption reduction rate of 5%. China Electricity Council publicly released the "China Power Industry Annual Development Report 2021" proposed that in 2025, China's whole society electricity consumption will reach 9.5 trillion kWh. According to the above data, the electricity consumption of communication base stations in 2025 accounts for about 1.1% of the total social electricity consumption.

  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module
  • GE IS410STCIS2A IS400STCIS2AFF Industrial Control Module
  • GE DS200DCFBG2BNC DS200DCFBG1BNC DC Feedback Board
  • GE VME5565 VMIVME-5565-11000 332-015565-110000 P Reflective Memory
  • GE VMIVME-7807 VMIVMME-01787-414001 350-00010078007-414001 D module
  • GE IS220PDOAH1A 336A4940CSP2 Discrete Output Module
  • GE VMIVME-4150 Analog Output Module
  • GE WESDAC D20 PS Industrial Power Module
  • GE 369B1860G0031 servo drive module
  • GE 369B1859G0021 Input/Output Module
  • GE 208D9845P0008 Motor Management Relay
  • GE IS420UCSCH1A-F.V0.1-A Independent Turbine Controller
  • GE D20EME10BASE-T 820-0474 Ethernet Interface Module
  • GE DS200DCFBG2BNC MRP445970 DC Feedback Board
  • GE IC800SSI228RD2-EE servo motor controller
  • GE IS200JPDMG1ACC S1AT005 Digital Input/Output (I/O) Module
  • GE IS200TSVCH1AED servo input/output terminal board
  • GE IS200TTURH1CCC S1DF00Z Terminal Turbine Plate
  • GE IS200TSVCH1ADC S1CX01H servo input-output board
  • GE IS200TRPGH1BDD S1C5029 Trip Solenoid Valve Control Board
  • GE IS220YAICS1A L Analog Input/Output Module
  • GE UCSC H1 IS420UCSCH1A-F-VO.1-A Controller Module
  • GE UCSC H1 IS420UCSCH1A-B Communication Processing Module
  • GE IC697VDD100 Digital Input Module
  • GE V7768-320000 3509301007768-320000A0 Controller Module
  • GE IS410TRLYS1B Relay Output Module
  • GE IS415UCVGH1A V7666-111000 VME Control Card
  • GE IC800SSI216RD2-CE servo motor controller
  • GE VMIVME-5565-010000 332-01565-010000P Reflective Memory
  • GE IC695ALG508-AA Analog Input Module
  • GE IC660EPM100J Power Monitoring and Control Module
  • GE RS-FS-9001 362A1052P004 Redundant Fan System Module
  • GE IS220UCSAH1AK independent processor module
  • GE 369-HI-0-M-0-0-0-E Motor Management Relay
  • GE CIFX50-C0 interface board
  • GE SR469-P5-H-A20-T Motor Management Relay
  • GE WES5120 2340-21005 power module
  • GE WES5120 2340-21003 Control Module
  • GE D20MIC10BASE-T 820-0756 Ethernet Module
  • GE WES13-3 5167-001-0210 Mechanical Relay Output Module
  • GE WES13-3 2508-21001 Control Board Module
  • GE D20ME 526-2005-216943 Input/Output Module