In addition, the use of vertical axis wind turbines is like turning a bungalow into a building, that is, putting a large number of horizontal wind turbines on top of each other can save a lot of valuable land, but also expand the use of conditions (such as building tops, islands, warships).
Three, to increase the kinetic energy of the wind. In addition to the addition of several horizontal axis wind turbines, the structure of the system is different from that of the mainstream wind power generation. Instead of three blades, a turbine was used. That is, a turbine instead of a propeller blade machine. Moreover, the wind engine is no longer driving the generator, but the air compressor. Instead of electrical energy, it is the pressure potential energy of the air (barometric potential energy).
As a large amount of low-pressure compressed air is stored in an energy storage container, the pressure potential energy in the container also increases. At a certain pressure, we use this high pressure air to push an air turbine, and the air turbine creates a rotating dynamic torque to drive the generator to generate electricity. By the way, an air turbine engine uses a turbofan turbine to turbocharge the air. It's very mature now. We use the turbine engine to drive the generator, but also to improve the utilization rate of energy.
In order to distinguish from the mainstream wind power generation system, this system can be called the aerodynamic power generation system.
Its structure mainly has three parts: first. Vertical axis wind drive unit. Second, the air compression unit. Third storage power generation unit. The vertical axis of the vertical wind drive unit is connected to the axis of the air compression unit. The air compressor that drives the air will turn the general air into a higher pressure compressed air. The air storage unit is connected to the energy storage power generation unit. The storage power generation unit comprises a compressed air storage vessel and a generator driven by an air turbine. The energy storage container is connected to the air turbine power machine, and high-pressure air is passed through the air turbine to push the generator to generate electricity.
Its working process is: the use of large flow of high-speed air after the collection of air pressurization, to promote the vertical axis turbine to generate dynamic torque, to promote the air compressor to produce compressed air. The large amount of compressed air in the storage container also increases the compressed potential energy of the air. The high pressure air after incremental energy increase generates high-speed torsional torque through the air turbine, which drives the turbine to drive the engine to generate electricity. Because the output of high pressure air is stable and controllable, the electrical energy emitted by the generator is also stable and controllable.
This aerodynamic generator not only overcomes the randomness and uncontrollability of the wind, but also generates electricity in the case of light winds. The requirements for wind field conditions are reduced. As long as there is sufficient wind storage it is expected to achieve smooth power generation throughout the day under full wind conditions for 24 hours. What is valuable is that he uses renewable energy, in addition to daily maintenance, operating costs are almost zero. And it's environmentally friendly, with no carbon dioxide emissions.
Some people will have such a problem: This aerodynamic power generation system, compared with the mainstream wind power generation system, more than a set of air compression storage system. Will there be a high cost? Our answer is yes. But only the initial construction of the high investment. The annual output of this air-powered generator has increased. The increased investment cost of the system can be compensated by its annual power generation. Preliminary estimates suggest that this aerodynamic system could generate more than 30% more electricity annually than today's mainstream wind turbines (depending on the region and the type). That is to say, the performance-to-price ratio per unit of power generation will be higher than the mainstream wind power generation system. Because of it, the environmental requirements are also lower, the footprint is smaller and the investment will be reduced. So overall, it's a win-lose situation,
So what does this new type of wind power system look like? It's like a big eagle standing up. The eagle head is an engine for small winds. The two wings are wind traps, which bring the wind to the center. The upper part of his body is an air engine, and the middle part is a compressor and an air storage container. Underneath it is the air turbine and generator and the control room to reduce the noise of the power generation. Here we only provide a schematic illustration of the principle.
So what's the future of this aerodynamic power generation system?
This aerodynamic power generation system. The use of wind power is just an innovation on the basis of wind power to maintain the advantages of wind power. And overcome the bottleneck difficulties in the further development of wind power generation, he is expected to achieve all-weather wind power generation. It also reduces the requirements of power generation wind farm and improves the application adaptability of the system. From an economic point of view, the operation investment of the aerodynamic power generation system is very small. It can generate electricity and produce water for cooling, and has a high performance-price ratio. There will be a high economic return, he must have a high competitive ability.
email:1583694102@qq.com
wang@kongjiangauto.com