Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Vertical axis air compression air power generation

来源: | 作者:佚名 | 发布时间 :2023-12-06 | 294 次浏览: | Share:


Excessive carbon dioxide emissions have caused global climate pollution, forcing people to find new, more environmentally friendly, more economical and safer new energy sources. The creation of electric vehicles is an example. In terms of power generation, wind power generation is undoubtedly a good choice.

But, because of wind power itself, it accounts for less than 10% of the world's electricity generation (China's share is even lower), so why? Where is the bottleneck? In summary, there are mainly two reasons as follows.

First, "the day is unpredictable", wind energy has randomness and uncontrollable characteristics.

Due to the randomness of the wind energy itself, the wind energy generator can not produce stable electric energy, and it is difficult to use the grid. Professionals call it the "curtailment" phenomenon, and this problem has not been fundamentally solved until now.

Second, in terms of structure, the structural design of energy generator.

At present, the mainstream wind turbine structure is mostly "three-blade impeller, horizontal axis, single direct drive." This structure has high requirements for the natural conditions of the wind field, low wind utilization rate and large land area and large investment.

How to solve this bottleneck affecting the development of wind power generation is the urgent matter to be solved in the further development of wind power generation.

"Energy storage conversion" is a feasible solution to the above problems. The basic idea of "energy storage conversion" is to store uncontrollable and unstable energy first, and then do stable energy output. Such as hydroelectric power generation, the unstable kinetic energy of the water flow is stored through the dam, and the stable kinetic energy of the water flow can be generated below the dam, and the energy can be stably converted into electricity. The kinetic energy of the air flow, that is, the wind energy, and the high-pressure air produced by pushing the air compressor with the wind turbine is also unstable. If a large amount of unstable high pressure air can be stored in a certain way, a stable high pressure air output can also be generated.

A steady stream of electricity is generated by a steady stream of high-pressure air that drives a turbine. In this regard, we in China are already ahead. For example, the Institute of Engineering Physics of the Chinese Academy of Sciences conducted a related experiment somewhere in southwest China at the end of 2018. At present, this project has been running well. However, the project consumption is huge, the construction period is long, it is difficult to use flexibly, for small and medium-sized power stations, it is obviously inconvenient to use.

Here we have made an innovation that can be used flexibly in different wind, different geographical environments, different scales of power generation, that is, vertical axis air compression energy storage type of aerodynamic power generation system. Its basic workflow and principle are described as follows.

A small wind turbine with multiple vertical axes drives multiple air compressors to produce high-pressure air. After the high-pressure air is collected and stored, it can generate stable and controllable high-pressure air transmission, and use the stable high-pressure air to drive the air turbine to drive the generator to generate electricity. In this way, you can not be affected by the weather, but also smooth power generation throughout the day. Achieve all-weather power generation. "Energy storage conversion" is for stable energy output and stable power generation. Only stable power generation is connected to the grid.

One might ask the question, what about the energy loss that must result from this energy conversion?

The input wind energy can be increased to compensate for the energy loss caused by energy conversion, knowing that wind energy is free, and the kinetic energy generated by the wind turbine is proportional to the swept wind area of the wind turbine, and the wind speed is proportional to the third power. The swept area of wind turbine is increased, and the wind speed at the inlet of wind turbine is increased. You can increase the input wind energy. It can compensate for energy loss during energy conversion. So how to increase the swept wind area and improve the wind speed at the fan inlet? We can increase the wind area of the fan, that is, in the vertical axis of the wind turbine, the two sides of the fan do two "baffles", just like the wings of the eagle to concentrate the surrounding wind to the middle (the horizontal axis can not do). Use a guide technology (like a water pressure tap) at the inlet of the fan to increase the inlet wind speed. This increases the power generated by wind turbines. Compensates for energy loss during energy conversion.

In addition, while generating electricity, it can be "cooled and made of water" throughout the day for additional use, and the tail gas of decompression after power generation can be recycled to reduce energy loss.

Two, why use a hammer to straighten the shaft? There is a limit to the utilization of wind energy in horizontal axis wind turbines. The maximum will not exceed 59% (Betzs lan). However, theoretical experiments have proved that vertical axis wind efficiency is higher than horizontal axis wind. The wind energy utilization limit of vertical axis wind turbines can exceed the Bates limit (72% of reports). This is the main reason why we use the vertical axis.

In addition, the use of vertical axis wind turbines is like turning a bungalow into a building, that is, putting a large number of horizontal wind turbines on top of each other can save a lot of valuable land, but also expand the use of conditions (such as building tops, islands, warships).

Three, to increase the kinetic energy of the wind. In addition to the addition of several horizontal axis wind turbines, the structure of the system is different from that of the mainstream wind power generation. Instead of three blades, a turbine was used. That is, a turbine instead of a propeller blade machine. Moreover, the wind engine is no longer driving the generator, but the air compressor. Instead of electrical energy, it is the pressure potential energy of the air (barometric potential energy).

As a large amount of low-pressure compressed air is stored in an energy storage container, the pressure potential energy in the container also increases. At a certain pressure, we use this high pressure air to push an air turbine, and the air turbine creates a rotating dynamic torque to drive the generator to generate electricity. By the way, an air turbine engine uses a turbofan turbine to turbocharge the air. It's very mature now. We use the turbine engine to drive the generator, but also to improve the utilization rate of energy.

In order to distinguish from the mainstream wind power generation system, this system can be called the aerodynamic power generation system.

Its structure mainly has three parts: first. Vertical axis wind drive unit. Second, the air compression unit. Third storage power generation unit. The vertical axis of the vertical wind drive unit is connected to the axis of the air compression unit. The air compressor that drives the air will turn the general air into a higher pressure compressed air. The air storage unit is connected to the energy storage power generation unit. The storage power generation unit comprises a compressed air storage vessel and a generator driven by an air turbine. The energy storage container is connected to the air turbine power machine, and high-pressure air is passed through the air turbine to push the generator to generate electricity.

Its working process is: the use of large flow of high-speed air after the collection of air pressurization, to promote the vertical axis turbine to generate dynamic torque, to promote the air compressor to produce compressed air. The large amount of compressed air in the storage container also increases the compressed potential energy of the air. The high pressure air after incremental energy increase generates high-speed torsional torque through the air turbine, which drives the turbine to drive the engine to generate electricity. Because the output of high pressure air is stable and controllable, the electrical energy emitted by the generator is also stable and controllable.

This aerodynamic generator not only overcomes the randomness and uncontrollability of the wind, but also generates electricity in the case of light winds. The requirements for wind field conditions are reduced. As long as there is sufficient wind storage it is expected to achieve smooth power generation throughout the day under full wind conditions for 24 hours. What is valuable is that he uses renewable energy, in addition to daily maintenance, operating costs are almost zero. And it's environmentally friendly, with no carbon dioxide emissions.

Some people will have such a problem: This aerodynamic power generation system, compared with the mainstream wind power generation system, more than a set of air compression storage system. Will there be a high cost? Our answer is yes. But only the initial construction of the high investment. The annual output of this air-powered generator has increased. The increased investment cost of the system can be compensated by its annual power generation. Preliminary estimates suggest that this aerodynamic system could generate more than 30% more electricity annually than today's mainstream wind turbines (depending on the region and the type). That is to say, the performance-to-price ratio per unit of power generation will be higher than the mainstream wind power generation system. Because of it, the environmental requirements are also lower, the footprint is smaller and the investment will be reduced. So overall, it's a win-lose situation,

So what does this new type of wind power system look like? It's like a big eagle standing up. The eagle head is an engine for small winds. The two wings are wind traps, which bring the wind to the center. The upper part of his body is an air engine, and the middle part is a compressor and an air storage container. Underneath it is the air turbine and generator and the control room to reduce the noise of the power generation. Here we only provide a schematic illustration of the principle.

So what's the future of this aerodynamic power generation system?

This aerodynamic power generation system. The use of wind power is just an innovation on the basis of wind power to maintain the advantages of wind power. And overcome the bottleneck difficulties in the further development of wind power generation, he is expected to achieve all-weather wind power generation. It also reduces the requirements of power generation wind farm and improves the application adaptability of the system. From an economic point of view, the operation investment of the aerodynamic power generation system is very small. It can generate electricity and produce water for cooling, and has a high performance-price ratio. There will be a high economic return, he must have a high competitive ability.

If this potential power generation method is widely adopted, wind power generation will bring new changes to the entire power generation industry. First, the proportion of electricity generated by wind power in global electricity generation (electricity share) will increase. Second, global carbon dioxide emissions from power generation would be reduced. Will produce cleaner and cheaper electricity.

Wind power generation, once a project strongly supported by governments around the world, once developed very quickly (China in the 1990s, the government had wind power price subsidies). But for the reasons I mentioned before, wind power seems to be falling out of favor at the moment.

In China, coal power is the main power generation in our country, the industrial chain formed by coal and electricity has a high monopoly position and say, this pattern is difficult to change.

However, from a worldwide perspective, wind power generation in developing countries, energy scarcity countries, there is still a great market and development potential. Under the development idea of the Belt and Road, this new aerodynamic power generation system will be more widely adopted.


  • ABB NE810 3BSE080207R1 Network switch
  • ABB NE802; NE802 Network switch 3BSE080237R1
  • GE HYDRAN 201Ti Single Channel Gas Monitoring Transmitter
  • GE Hydran M2-X Transformer Online Monitoring Equipment
  • GE Hydran M2 Transformer Monitoring System
  • Kollmorgen Seidel 65WKS-CE310/6PB - Servo Drive Control
  • Kollmorgen U9M4T - Servodisc DC Motor, With Harmonic Drive Transmission
  • KOLLMORGEN TT-2952-1010-B - INLAND BRUSH SERVO MOTOR WITH TACH
  • ONE VF-RA2474N-5/10/12/15 - Servo Drive Power Cable
  • Kollmorgen S30601-NA - Servostar 346 + EtherCat
  • Kollmorgen HDIL100P1 - Direct Drive Linear Hall Effect Assembly
  • Kollmorgen TT-4239-1010-AA - DC Servo Motor 875 RPM
  • PMI Kollmorgen 00-00907-999 - ServoDisc DC Motor 0.5" Diameter Shaft
  • INLAND KOLLMORGEN TT-2952-1010-B - MOTOR (USES RESOLVER)
  • KOLLMORGEN CTI-187-2 - BRUSHLESS MOTOR DANAHER MOTION
  • Kollmorgen 12-0857 - Lead Screw Electric Cylinder without Motor
  • Kollmorgen AKM13C-ANCNR-00 - Servo Motor
  • kollmorgen 6sm, 10m - Cable
  • KOLLMORGEN ME2-207-C-94-250 - GOLDLINE SERVOMOTOR-ENCODER COMMUTATED
  • Kollmorgen MT308A1-R1C1 - GoldLine Motor
  • Kollmorgen 73 & 54 cm Travel - Ironless Linear Motors on THK Rail
  • Kollmorgen AKM53H-ACCNR-00 - Servo Motor
  • Kollmorgen PA5000 - Power Supply
  • KOLLMORGEN D082M-12-1310 - GOLDLINE DDR DIRECT DRIVE ROTARY MOTOR 230Vrms 300 RPM
  • Kollmorgen RBEH-01210-A14 - Brushless Motor, Heidenhain D-83301
  • KOLLMORGEN Servotronix PRD-CC18551H-11 - Servo Board
  • Kollmorgen DH083M-13-1310 - Ho Direct Drive Rotary. Max Speed: 400/500 RPM
  • KOLLMORGEN BMHR-4.8XX - INLAND MOTOR
  • Kollmorgen Seidel 84421 - Motor Cable 20 Metre 6SM 27/37 AKM DBL Engines
  • Kollmorgen AKD1207-NBCC-0000 - Drive
  • HP Indigo / Kollmorgen VLM32H-ALNR-00 - Motor
  • SUPERIOR ELECTRIC / KOLLMORGEN GM05009005 - POWERSTAT 50 AMP VARIAC w/ PMI MOTOR
  • Kollmorgen CM12A1-015-033-00 - MOTOR CABLE for AKD B/P/T/M Motor AKM 1-7 Cable
  • Kollmorgen U9M2 - DC Motor
  • Kollmorgen AKM11C-ANMN2-00 - 3-Phase PM Servo Motor 110W
  • Kollmorgen 60-023168-000 - MOTOR GEARBOX ASSEMBLY SERVODISC DC NO REAR SHAFT
  • Kollmorgen AS10300 - servo drive servo star Cincinnati
  • Kollmorgen AKM23D-EFC2C-00 - Servo Motor AKD Drive
  • KOLLMORGEN E33HRFB-LNK-NS-01 - STEPPER MOTOR 2.7AMP 251W 1500RPM 170V
  • Kollmorgen AKM21G-ENM2DB00 - Servomotor
  • KOLLMORGEN SERVO STAR 620-AS - 230-480V 20A Servo Drive
  • Kollmorgen CFE0A1-002-006-00 - Encoder Cable 6.00m
  • KOLLMORGEN AKM21C-ANM2DBOO - PM SERVOMOTOR
  • Kollmorgen 03200-2G205A - ServoStar Servo Drive
  • Kollmorgen CR10251 - SERVOSTAR CD AC Servo Driver
  • Kollmorgen VF-DA0474N-03-0 - 10 Ft Feedback Cable
  • KOLLMORGEN AKM21S-ANMNR-03 - Servo Motor
  • Danaher Motion Kollmorgen S403AM-SE - Servostar 443M-S Servo Drive
  • Kollmorgen Seidel digifas 7204 - Servo Amplifier Digital
  • Kollmorgen Industrial Drive B-406-B-A1-B3 - Goldline Brushless Servomotor
  • Danaher Motion S20630-CNS - Servo Kollmorgen S200 Series
  • KOLLMORGEN B-206-A-31-B3 - GOLDLINE BRUSHLESS PM SERVO MOTOR 1400RPM
  • Kollmorgen Seidel SR6-6SMx7 - 4m Cable
  • Cincinnati Milacron Kollmorgen Vickers PSR4/5-250-7500 - Power Supply
  • Kollmorgen AKM 13C-ANCNR-00 - Gripper Handling with Neugart PLE 40 gears
  • Kollmorgen SERVOSTAR 403 A-P - 3a servo drive
  • KOLLMORGEN S6M4H - INDEXER ASSY SERVO MOTOR
  • SERVOMOTOR KOLLMORGEN SEIDEL 6SM 57M-3.000-G-09 - Servo Motor
  • Kollmorgen VP-507BEAN-03 - Valueline AKD 10 Ft Power Cable
  • KOLLMORGEN 28454 - SERVO DRIVE, SERVOSTAR 300 SERVOSTAR 310
  • KOLLMORGEN TT-4205-4017-C - INDUSTRIAL DRIVE DC MOTOR
  • Kollmorgen T150551 - Servostar 343 Control Drive
  • Kollmorgen ICD05030A1C1 - Platinum DDL Direct Drive Linear Motor w/ 30" Rail Way
  • Kollmorgen SERVOSTAR 303 S30361-SE - Servo Drive
  • Kollmorgen 00-00907-002 - ServoDisc DC Motor Varian Semiconductor 3500054
  • Kollmorgen CM12A1-025-005-00 - MOTOR CABLE for AKD B/P/T/M Motor AKM 1-7 Cable
  • KOLLMORGEN MOTION TECH IL18100A3TRC1 - BRUSHLESS LINEAR MOTOR PLATINUM DDL
  • Kollmorgen SERVOSTAR 406 M-C - Servo Drive FW: 7.36
  • Kollmorgen IC11030A1P1103 - platinum direct drive linear motor
  • W&T 10/100BaseT - Com Server Highspeed 3×RS232/RS422/RS485
  • Kollmorgen S30361-NA - drive brand
  • Kollmorgen Industrial Drives PSR3-208/50-01-003 - Power Supply
  • Kollmorgen RBE-03011-A00 - Brushless Frameless Servo Motor, OD: 5-5/64"/129mm
  • Industrial Drives SBD2-20-1101-5301C2/160-20 - Servo Amplifier Board For Parts
  • Industrial Drives SBD2-20-1101-5301C2/160-20 - Servo Amplifier Board For Parts
  • Industrial Drives SBD2-20-1101-5301C2/160-20 - Servo Amplifier Board For Parts
  • Kollmorgen IC44030A2P1 - LINEAR DRIVE MOTOR
  • KOLLMORGEN AKM22E-ANS2R-02 - servo motor + Micron X-TRUE 60
  • Kollmorgen 18442-01B - Pendant (E2)
  • Kollmorgen AKD-P00306-NBEC-0069 - Drive
  • Kollmorgen AKM53H-ACCNR-00 - Servomoteur
  • Kollmorgen AKD-P01207-NACN-0056 - Servo Drive
  • Kollmorgen SERVOSTAR 403a-c - Servo Drive
  • Kollmorgen B-204-B-39-016 - Servo Motor
  • Giddings & Lewis Dahaner Motion Kollmorgen M.1017.3140 R3 - Output Module
  • Kollmorgen KNSG300 - Emergency Light Unit
  • KOLLMORGEN 62-0050 Model T31V-EM-C0 - Servo Motor Shaft Size 3/8" Dia 1-1/4" Long
  • Kollmorgen S30601-NA-ARM9 - SERVOSTAR346 Controller w/o Fan As Is
  • Kollmorgen PMI Motors 00-00903-010 - ServoDisc DC Motor Type U9M4H 1/2" shafts
  • Kollmorgen PMI Motion U12M4 - Servo Disc DC Motor Universal Instruments 11467000
  • Kollmorgen AKM53H-accnr-00 - Servo Motor
  • DANAGER MOTION / KOLLMORGEN ACD4805-W4 - (70A ) Vehicle / Motor Controller
  • Kollmorgen s60300 - SERVOSTAR 603 3 x 230-480v 2kva
  • KOLLMORGEN B-404-C-21 - GOLDLINE BRUSHLESS P.M. SERVOMOTOR
  • Kollmorgen T-5144-A - GE Aviation 739034-01 Direct Drive DC Torque Motor
  • KOLLMORGEN M.1302.8761 - CABLE, POWER
  • Kollmorgen CE03250 - Servostar Servo Drive
  • Kollmorgen K-342 - dual axis automatic autocollimator
  • Kollmorgen TT-4500-1010-B - Inland Motor
  • Kollmorgen S20260-Srs - Synqnets200 Series Servo Drive Forparts
  • Kollmorgen PRDRHP720SND-65 - drive CR06703-R
  • KOLLMORGEN S70362-NANANA - driver
  • Kollmorgen CR06260-000000 - SERVOSTAR CD AC Servo Driver
  • KollMorgen akd-m00306-mcec-D000 - Multi-Axis Master Programmable Drive AKD PDMM
  • KOLLMORGEN S61000 - SERVOSTAR 610 3X230-480V 10A
  • Kollmorgen AKD-P00306-NBCC-0000 - AKD Servo Drive
  • KOLLMORGEN CP306250 - SERVOSTAR SP Servo Drive
  • Kollmorgen MPK411 - controller
  • Kollmorgen S64001 - SERVOSTAR 640, factory-certified
  • Kollmorgen Servotronix Prdr0087006Z-00 - Lvd Servo Drive
  • Kollmorgen AKD-P00306-NAAN-0000 - Servo Drive Controller, 1.2KVA, 240Vac, 3 Phase
  • Kollmorgen MCSS08-3232-001 - MCSS06-3224-001 ServoStar Drives (AS-IS)
  • Kollmorgen CR06250-2D063A - drive
  • YASKAWA SGDP-04APA - SERVOPACK SERVO DRIVE
  • Kollmorgen s62001 - servostar 620-as 14kva 20a ip2o 3x 230-480v
  • Kollmorgen Seidel S60100 - Servostar 601 Servo Drive
  • KOLLMORGEN CR06703-R - HP SERVOSTAR CD CONTROLLER
  • kollmorgen Prdr0052200z-05 - graco inter Servo Component
  • KOLLMORGEN S403AM-SE - drive SERVOSTAR 443M-S
  • YASKAWA SGDP-01APA - SERVOPACK SERVO DRIVE
  • Kollmorgen CE06200-1H348H - SERVOSTAR CD Servo Driver
  • Kollmorgen S71262-NANANA - S700 Servo Amplifier 208Y/120V 480Y/277V
  • Kollmorgen S70302-NANANA-NA - S700 Servo Driver
  • KOLLMORGEN S61401-560 - ATS-SERVOSTAR 614-AS Servo Drive
  • KOLLMORGEN Industrial Drives BDS4A-103J-0001/102A21P - Servo Controller
  • Kollmorgen S71202-NANANA-NA-024 - S700 Servo Driver
  • KOLLMORGEN S70302-NANANA - driver
  • Kollmorgen CR06250 - SERVOSTAR Servo Drive