Excessive carbon dioxide emissions have caused global climate pollution, forcing people to find new, more environmentally friendly, more economical and safer new energy sources. The creation of electric vehicles is an example. In terms of power generation, wind power generation is undoubtedly a good choice.
But, because of wind power itself, it accounts for less than 10% of the world's electricity generation (China's share is even lower), so why? Where is the bottleneck? In summary, there are mainly two reasons as follows.
First, "the day is unpredictable", wind energy has randomness and uncontrollable characteristics.
Due to the randomness of the wind energy itself, the wind energy generator can not produce stable electric energy, and it is difficult to use the grid. Professionals call it the "curtailment" phenomenon, and this problem has not been fundamentally solved until now.
Second, in terms of structure, the structural design of energy generator.
At present, the mainstream wind turbine structure is mostly "three-blade impeller, horizontal axis, single direct drive." This structure has high requirements for the natural conditions of the wind field, low wind utilization rate and large land area and large investment.
How to solve this bottleneck affecting the development of wind power generation is the urgent matter to be solved in the further development of wind power generation.
"Energy storage conversion" is a feasible solution to the above problems. The basic idea of "energy storage conversion" is to store uncontrollable and unstable energy first, and then do stable energy output. Such as hydroelectric power generation, the unstable kinetic energy of the water flow is stored through the dam, and the stable kinetic energy of the water flow can be generated below the dam, and the energy can be stably converted into electricity. The kinetic energy of the air flow, that is, the wind energy, and the high-pressure air produced by pushing the air compressor with the wind turbine is also unstable. If a large amount of unstable high pressure air can be stored in a certain way, a stable high pressure air output can also be generated.
A steady stream of electricity is generated by a steady stream of high-pressure air that drives a turbine. In this regard, we in China are already ahead. For example, the Institute of Engineering Physics of the Chinese Academy of Sciences conducted a related experiment somewhere in southwest China at the end of 2018. At present, this project has been running well. However, the project consumption is huge, the construction period is long, it is difficult to use flexibly, for small and medium-sized power stations, it is obviously inconvenient to use.
Here we have made an innovation that can be used flexibly in different wind, different geographical environments, different scales of power generation, that is, vertical axis air compression energy storage type of aerodynamic power generation system. Its basic workflow and principle are described as follows.
A small wind turbine with multiple vertical axes drives multiple air compressors to produce high-pressure air. After the high-pressure air is collected and stored, it can generate stable and controllable high-pressure air transmission, and use the stable high-pressure air to drive the air turbine to drive the generator to generate electricity. In this way, you can not be affected by the weather, but also smooth power generation throughout the day. Achieve all-weather power generation. "Energy storage conversion" is for stable energy output and stable power generation. Only stable power generation is connected to the grid.
One might ask the question, what about the energy loss that must result from this energy conversion?
The input wind energy can be increased to compensate for the energy loss caused by energy conversion, knowing that wind energy is free, and the kinetic energy generated by the wind turbine is proportional to the swept wind area of the wind turbine, and the wind speed is proportional to the third power. The swept area of wind turbine is increased, and the wind speed at the inlet of wind turbine is increased. You can increase the input wind energy. It can compensate for energy loss during energy conversion. So how to increase the swept wind area and improve the wind speed at the fan inlet? We can increase the wind area of the fan, that is, in the vertical axis of the wind turbine, the two sides of the fan do two "baffles", just like the wings of the eagle to concentrate the surrounding wind to the middle (the horizontal axis can not do). Use a guide technology (like a water pressure tap) at the inlet of the fan to increase the inlet wind speed. This increases the power generated by wind turbines. Compensates for energy loss during energy conversion.
In addition, while generating electricity, it can be "cooled and made of water" throughout the day for additional use, and the tail gas of decompression after power generation can be recycled to reduce energy loss.
Two, why use a hammer to straighten the shaft? There is a limit to the utilization of wind energy in horizontal axis wind turbines. The maximum will not exceed 59% (Betzs lan). However, theoretical experiments have proved that vertical axis wind efficiency is higher than horizontal axis wind. The wind energy utilization limit of vertical axis wind turbines can exceed the Bates limit (72% of reports). This is the main reason why we use the vertical axis.
email:1583694102@qq.com
wang@kongjiangauto.com