Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Construction of comprehensive treatment of mine solid waste in the era of big data

来源: | 作者:佚名 | 发布时间 :2023-12-21 | 721 次浏览: | Share:

In recent years, with the rapid development of China's economy, the environment has been greatly damaged, we should adhere to the principle of economic development can not be at the expense of the environment, pay attention to environmental issues. One of the more important issues is the treatment of solid waste, and the main source of solid waste is the waste rock and tailings discharged by the mining industry, that is, the solid waste of the mine. Mine solid waste belongs to industrial solid waste, mainly refers to all kinds of mines in the construction of shafts and alleys, mining process, open pit mining process produced by the stripping and waste rock, and washing and smelting process produced by the tailings or waste slag.

The amount of stripping waste produced by mining in China is amazing, and the mining stripping ratio of mining is large, such as the mining stripping ratio of metallurgical mines is (2~4); The ratio of mining and stripping in straight mines is mostly 1: (2~8), and the highest is 1: 14. The maximum mining and stripping ratio of gold mines can reach 1:(10~14). The annual discharge of waste rock from mines in China exceeds 600 million tons, and the annual stripping of waste rock from open-pit iron mines alone reaches 400 million tons. The total amount of waste stone in our country has reached tens of billions of tons, which is the first country in the name of waste stone discharge.

The harm caused by solid waste is also very huge, mainly in the following aspects:

One is to pollute the environment around the mine. The minerals in the mine contain a large number of unknown pollutants before being treated, and the waste naturally contains excessive pollutants (such as radioactive elements, heavy metal elements, etc.). In the process of mine solid waste stacking, on the one hand, these pollutants will penetrate into the ground and pollute the surrounding soil and water sources; On the other hand, it will also react with other substances on the surface, forming new pollution. It is understood that in the total area of the land destroyed by mines in China, about 59% are destroyed due to the gob formed by mining,20% are occupied by open pit waste piles,13% are occupied by tailings ponds,5% are occupied by underground waste rock piles, and 3% are in the collapse danger zone. Among them, tailings and waste rock piles accounted for 38% of the total.

The other is soil erosion. Serious soil pollution will make the surface of the mine can not continue to grow vegetation, resulting in the surrounding soil increasingly loose, when the rain washed will form soil erosion. The third is to bring security risks. Mine waste is piled up in a disorderly manner, and the soil has become loose due to damage, so there may be a collapse or landslide phenomenon at any time. In recent years, the resulting disasters have occurred from time to time, such as landslide, debris flow, tailings dam break, etc., which not only destroyed the ecological environment, but also posed a serious threat to people's lives and property safety. On December 20, 2015, a huge landslide occurred at the Hongao Yu mud collection site in Guangming New District of Shenzhen, Guangdong Province, killing 73 people. After investigation, it was found that the main cause of the accident was the serious over-storage and ultra-high overfill in the receiving field, which led to this tragedy. In addition, due to the environmental deterioration caused by the stacked mine solid waste, the later restoration cost will also be greatly increased.

The fourth is the serious waste of resources caused by the massive discharge of mine solid waste. Mine solid waste often contains a variety of metal elements, if long-term stacking and loss, not timely recovery and comprehensive utilization, not only pollute the environment, but also for the national mineral resources is a great waste. The utilization rate of mineral resources in China is very low, its total recovery rate is 20% lower than that of developed countries, the average recovery rate of ferrous metal mining such as iron and manganese is only 65%, and the comprehensive recovery rate of non-ferrous metal mining in China is only 60%~70%. Taking iron ore as an example, there are more than 30 kinds of associated components in Chinese resources, but only 20 kinds can be recovered at present. Therefore, a large amount of valuable metal elements and available non-metallic minerals are left in solid waste, resulting in annual mineral resource development losses of about 100 billion yuan. Especially the old tailings, due to the restriction of the conditions at that time, the loss to the valuable group of tailings is greater. In 1997, the amount of gold mined in China was 25.4 million tons, the total recovery rate of gold was 86.46%, and about 18-20 tons of gold was lost in the tailings.

These are the main hazards of mine solid waste, it is like a time bomb, once activated, will cause a devastating blow to the environment. And this "bomb" is far from as simple as it seems, and its ingredients are extremely complex, so the actual consequences are far more than those listed. There is therefore an urgent need for action.

  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module
  • GE IS410STCIS2A IS400STCIS2AFF Industrial Control Module
  • GE DS200DCFBG2BNC DS200DCFBG1BNC DC Feedback Board
  • GE VME5565 VMIVME-5565-11000 332-015565-110000 P Reflective Memory
  • GE VMIVME-7807 VMIVMME-01787-414001 350-00010078007-414001 D module
  • GE IS220PDOAH1A 336A4940CSP2 Discrete Output Module
  • GE VMIVME-4150 Analog Output Module
  • GE WESDAC D20 PS Industrial Power Module
  • GE 369B1860G0031 servo drive module
  • GE 369B1859G0021 Input/Output Module
  • GE 208D9845P0008 Motor Management Relay
  • GE IS420UCSCH1A-F.V0.1-A Independent Turbine Controller
  • GE D20EME10BASE-T 820-0474 Ethernet Interface Module
  • GE DS200DCFBG2BNC MRP445970 DC Feedback Board
  • GE IC800SSI228RD2-EE servo motor controller
  • GE IS200JPDMG1ACC S1AT005 Digital Input/Output (I/O) Module
  • GE IS200TSVCH1AED servo input/output terminal board
  • GE IS200TTURH1CCC S1DF00Z Terminal Turbine Plate
  • GE IS200TSVCH1ADC S1CX01H servo input-output board
  • GE IS200TRPGH1BDD S1C5029 Trip Solenoid Valve Control Board
  • GE IS220YAICS1A L Analog Input/Output Module
  • GE UCSC H1 IS420UCSCH1A-F-VO.1-A Controller Module
  • GE UCSC H1 IS420UCSCH1A-B Communication Processing Module
  • GE IC697VDD100 Digital Input Module
  • GE V7768-320000 3509301007768-320000A0 Controller Module
  • GE IS410TRLYS1B Relay Output Module
  • GE IS415UCVGH1A V7666-111000 VME Control Card
  • GE IC800SSI216RD2-CE servo motor controller
  • GE VMIVME-5565-010000 332-01565-010000P Reflective Memory
  • GE IC695ALG508-AA Analog Input Module
  • GE IC660EPM100J Power Monitoring and Control Module
  • GE RS-FS-9001 362A1052P004 Redundant Fan System Module
  • GE IS220UCSAH1AK independent processor module
  • GE 369-HI-0-M-0-0-0-E Motor Management Relay
  • GE CIFX50-C0 interface board
  • GE SR469-P5-H-A20-T Motor Management Relay
  • GE WES5120 2340-21005 power module
  • GE WES5120 2340-21003 Control Module
  • GE D20MIC10BASE-T 820-0756 Ethernet Module
  • GE WES13-3 5167-001-0210 Mechanical Relay Output Module
  • GE WES13-3 2508-21001 Control Board Module
  • GE D20ME 526-2005-216943 Input/Output Module