Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Allen Bradley 1746-NI8 SLC 500 Analog Input Module

来源: | 作者:FAN | 发布时间 :2025-09-18 | 477 次浏览: | Share:

Allen Bradley 1746-NI8 SLC 500 Analog Input Module

Core framework and scope of application of the document

The document follows the logical mainline of "technical principles → practical procedures → fault handling", consisting of 10 core chapters and 4 appendices, with a complete structure and emphasis on practicality. The applicable product is the 1746-NI8 analog input module, which is a single slot module for SLC 500 control systems. It supports 8 analog input channels and can be connected to voltage (such as ± 10V DC, 0-5V DC) or current (such as 4-20mA, 0-20mA) signals. It is suitable for signal acquisition of sensors, transmitters and other devices and is widely used in industrial process parameter monitoring scenarios such as temperature, pressure, flow rate, liquid level, etc.

image.png

Core chapter content sorting

(1) Product Overview: Functions and Core Features

Module positioning and hardware composition

Core function: Convert analog input signals (voltage/current) into digital signals through an A/D converter, store them in an input mapping table, and provide them for SLC 500 processors (such as SLC 5/02, 5/03, 5/04) to read. It supports two interface modes: Class 1 (basic configuration) and Class 3 (extended configuration, including user-defined scaling and status monitoring).

Hardware structure: including detachable terminal block (1746-RT25G), 8-channel status LED (green), 1-channel module status LED (green), voltage/current selection DIP switch, cable fixing slot, self-locking buckle, etc. The terminal block supports 18 position wiring and can be connected to shielded twisted pair cables (recommended Belden 8761).

Key technical characteristics

Channel configuration flexibility: 8 channels can be independently configured as single ended input or differential input, and differential input has stronger anti-interference ability; Supports 8 types of digital low-pass filtering frequencies (1Hz-75Hz), which can be selected according to the signal noise situation. Low frequency filtering (such as 1Hz) has good anti-interference effect, and high-frequency filtering (such as 75Hz) has fast response speed.

Self calibration and diagnosis: The module continuously self calibrates the enable channel without the need for manual calibration; Support power on diagnosis (internal circuit, memory detection) and channel diagnosis (open circuit, over range, configuration error detection), with fault status feedback through LED and status words.

Data format diversity: The converted digital data supports 5 formats: engineering units (1mV/step voltage, 1 μ A/step current), PID scaling (0-16383 range, adapted to SLC PID algorithm), proportional counting (-32768-32767), 1746-NI4 compatible format, and user-defined range (Class 3 mode only).

(2) Installation and Wiring: Hardware Deployment Specification

Pre-installation preparation

Environmental requirements: Operating temperature of 0 ° C-55 ° C (not the rightmost slot), 0 ° C-60 ° C (rightmost slot, better heat dissipation), storage temperature of -40 ° C-85 ° C, relative humidity of 5% -95% (no condensation), suitable for industrial environment with pollution level 2, and installed in a closed metal enclosure (protection level reference NEMA 250 or EN/IEC 60529).

Static electricity protection: The module is sensitive to static electricity. When operating, it is necessary to wear a grounding wristband, touch a grounded object to discharge electricity, and do not touch the back panel pins. When idle, it should be stored in anti-static packaging.

Power requirements: Power is obtained through the SLC 500 chassis backplane, with+5V DC (200mA) for digital circuits and+24V DC (100mA) for analog circuits, without the need for external power supply; Calculate the total chassis load to avoid power overload (refer to SLC 500 system manual).

Module installation steps

Slot selection: It can be installed in any slot of SLC 500 modular or extended chassis (except for processor slot 0). When installing multiple modules, it is recommended to place 1746-NI8 in the right slot (for better heat dissipation); The 2-plot expansion chassis (1746-A2) requires reference to the compatibility table, and some module combinations require an external power supply.

Physical installation: Align the module with the upper and lower rails of the chassis, slide it to the self-locking buckle, and ensure that the orange DIN rail locking screw is in a horizontal position (locked state); After installation, cover the unused slot (1746-N2 filler), and cover the exposed interconnection part of the last module with an end cap to prevent electric shock.

Terminal block operation: When disassembling, loosen the release screws on both sides and pull the handle upwards; When installing, first insert the handleless end (arc-shaped buckle) and rotate it to lock. The 1746-RTBS/RTB3S terminal needs to be locked/unlocked with a 3mm screwdriver (1492-N90) at a 73 ° angle.

Wiring specifications

Terminal definition: The terminal block contains 8 channels (each with ± end), 2 shielded terminals (channels 0-3 are connected to the upper shield, 4-7 are connected to the lower shield), and only one end of the shielding layer is grounded (to avoid ground circulation).

Wiring type:

Single ended input: Multiple channels share a common terminal, which can be connected to all "-" terminals through jumper wires, suitable for scenarios where signal sources and modules are grounded together.

Differential input: Each channel has independent ± terminals and strong resistance to common mode noise (common mode voltage range ± 10.5V), suitable for long-distance wiring or complex noise environments.

Wire requirements: Supports 0.25-2.5mm ² (22-14 AWG) solid/stranded copper wire (rated temperature ≥ 75 ° C), insulation layer thickness ≤ 1.2mm, terminal tightening torque ≤ 0.565N · m (5 lb in); The 2-wire/3-wire/4-wire transmitter needs to be matched with an external power supply (the module does not provide loop power).

(3) Run configuration: Address and channel management

Module identification and address allocation

ID code setting: The ID code for Class 1 mode is 3526 (8 input words+8 output words), and for Class 3 mode it is 12726 (16 input words+12 output words), which needs to be configured through programming software (such as RSLogix 500 V1.30+, APS). SLC 5/01 only supports Class 1 and 5/02 and above modes.

Memory Mapping:

Class 1: The output image (O: e.0-O: e.7) stores 8 channel configuration words, and the input image (I: e.0-I: e.7) stores 8 channel data words.

Class 3: The output image contains an additional 4 scaling range words (O: e.8-O: e.11), and the input image contains an additional 8 channel status words (I: e.8-I: e.15), which are used to monitor channel faults (such as open circuit, out of range).

Detailed explanation of channel configuration

Configuration word structure: 16 bit configuration word (O: e.x) defines channel parameters, and the key functions are as follows:

Bit 0-2: Input type (e.g. 101=4-20mA, 011=0-10V DC).

Bit 3-5: Data format (e.g. 000=engineering unit, 001=PID scaling).

Bit 6-7: Open circuit state (00=output 0, 01=upper limit value, 10=lower limit value, only valid for 4-20mA).

Bit 8-10: Filter frequency (100=10Hz, 011=20Hz).

Bit 11: Channel enabled (1=enabled, 0=disabled, data word cleared after disabled).

Configuration process: Define configuration parameters in an integer file (such as N10), write the configuration word to the module output image through the COPY instruction of the ladder program, and trigger configuration transfer with the "first scan bit (S: 1/15)" when powered on.

Data scaling and transformation

Engineering unit scaling: directly corresponding to physical quantities (such as 4-20mA corresponding to 100-500 ° C), data word value x scaling factor x (range/signal range)=actual value, for example: 5500 (1 μ A/step) x (932-212 ° F)/(20-4mA)=247.5 ° F.

PID scaling: 0-16383 corresponds to the full range of the signal, formula: actual value=lower limit value+(upper limit value - lower limit value) × (data word/16383).

User defined scaling (Class 3): Set upper and lower limits through O: e.8-O: e.11, actual value=data word x (range/(upper limit value - lower limit value)).


(4) Diagnosis and Troubleshooting: Problem Localization and Resolution

LED status interpretation

Channel status LED:

Always on: The channel is enabled and functioning normally.

Flashing: Channel malfunction (open circuit, over range, configuration error), needs to be judged in conjunction with the status word.

Off: Channel disabled or not configured.

Module status LED:

Always on: The module is running normally.

Extinguish: Module malfunction (power on diagnosis failure, hardware error), power off and restart required. If ineffective, contact the manufacturer.

Common faults and their solutions

Open circuit fault (4-20mA channel): Set the status word bit 12 to 1, check whether the sensor wiring is loose/broken, whether the sensor is damaged, and the module response time is 0.75-6ms (depending on the number of enabled channels).

Over/Under Range: Set the status words 13/14 to 1, check if the input signal exceeds the configured range (such as 4-20mA signal below 3.5mA or above 20.5mA), adjust the sensor or reconfigure the input type.

Configuration error: Set the status word bit 15 to 1. Check if the configuration word bits 0-7 (input type, data format, open circuit status) are an illegal combination (e.g. bits 6-7=11), and rewrite the configuration word.

Module unresponsive: Check the backplane power supply (+5V/+24V), whether the module is fully inserted into the slot, and whether the chassis is overloaded. If the fault persists after power failure and restart, the module needs to be replaced.

Maintenance and spare parts

Replaceable spare parts: terminal block (1746-RT25G), terminal cover (1746-R13), user manual (1746-6.8).

Maintenance taboos: Do not disassemble the module by yourself, and return it to the manufacturer for repair in case of malfunction; Only use dry anti-static cloth for cleaning, and do not use cleaning agents.

(5) Application example: Practical scenario reference

Basic Example: Current Value Display

Requirement: Collect single-phase motor current (4-20mA transmitter) and display the current value on an LED display (BCD format).

Configuration: Channel 0 is set to 4-20mA, engineering unit, 10Hz filtering, open circuit output 0; Scale 3500-20500 (data word range) to 0-100 (current range) using SCP command, convert TOD command to BCD and send it to the display.

Supplementary example: Multi parameter monitoring

Requirement: Monitor the three-phase motor current (L1-L3), tank pressure, and liquid level, switch the display through a selection switch, and trigger an alarm for low/high liquid level.

Configuration: Channel 0-2 (4-20mA, current), Channel 3 (4-20mA, pressure), Channel 4 (0-10V DC, liquid level); The ladder program includes scaling, BCD conversion, and alarm logic (trigger light for liquid level<12 inches or>110 inches).

Technical specifications and appendix supplements

Core specifications

Electrical parameters: A/D conversion to successive approximation type, common mode rejection ratio (CMRR) ≥ 75dB at DC and ≥ 100dB at 50/60Hz, channel update time 0.75m/s channel, total module update time 6ms (8-channel enabled).

Physical parameters: Size 56.6 × 12.1 × 77.5mm (2.23 × 0.48 × 3.05 inches), weight 30.9g (1.09 ounces), terminal supports 2 channels of 14 AWG wires.

Appendix Resources

Appendix A: Complete Electrical/Environmental/Physical Specification Table.

Appendix B: Channel Configuration Worksheet (including bit definition and setting examples).

Appendix C: ID code, address, and configuration word adaptation method for migrating from 1746-NI4 (4-channel) to 1746-NI8.

Appendix D: Binary Supplement Explanation (Explaining SLC Processor Data Storage Format).


Key precautions

Compatibility check: The compatibility of module combinations (refer to Table 3-2 in the manual) needs to be confirmed for the 2-slot expansion chassis (1746-A2), and some combinations require external power supply; The programming software needs to support Class 3 mode (such as RSLogix 500 V1.30+).

Anti interference measures: The distance between the analog line and the power line should be ≥ 15cm, shielded twisted pair cables should be used, and the shielding layer should be grounded at one end; Choose an appropriate filtering frequency (such as 10Hz filtering in a 60Hz environment) to reduce power frequency noise.

Safety regulations: Installation/disassembly/wiring must be powered off, hazardous environments (such as Class I Zone 2) must meet explosion-proof requirements, module grounding relies on DIN rails (recommended galvanized steel rails), fixed every 200mm.

  • YASKAWA NPSO-0503L high-precision servo drive module
  • YASKAWA LASC-100SUB high-precision motion control module
  • YASKAWA JUSP-WS15AB servo control unit
  • YASKAWA JANCD-MIF01 Multi Interface Communication Card
  • YASKAWA JAMSC-B1063 Industrial Control Module
  • YASKAWA JAMSC-B1050 Industrial Control Module
  • Alstom BCSR1 TERMINAL BOARD OF 8 LOGIC OUTPUT SIGNALS
  • Alstom BCEA1 TERMINAL BOARD OF 8 ANALOGUE INPUT SIGNALS
  • Alstom BCEL2 TERMINAL BOARD FOR 12 LOGIC INPUT SIGNALS
  • Alstom E64L1- LOGIC INFORMATION ACQUISITION BOARD
  • Alstom FRTN2 BOARD OF DIGITAL INDICATION OF VOLTAGE REGULATION
  • Alstom ARTN1 DIGITAL INDICATION BOARD FOR VOLTAGE REGULATION
  • Alstom MCRI1 MODULE BOARD FOR SETTING SETTINGS AND CURRENT REGULATION
  • Alstom CPRM1 SINGLE-PHASE POWER REGULATION BOARD
  • Alstom ESVI1 INPUT/OUTPUT BOARD FOR CURRENT AND VOLTAGE SIGNALS
  • Alstom RDSP1 BOARD FOR ADJUSTING DIGITAL SIGNAL PROCESSES
  • Alstom MDEX1 microprocessor control board
  • Alstom IRVI20 - REGULATION INTERFACE BOARD
  • Alstom AMS42 POWER SUPPLY BOARD
  • ABB VACUUM CONTACTOR VSC7 SCO IEC 60470 400A 3POLE 220-250V 50/60Hz
  • ABB DRIVEMONITOR VERSION 4000 DRIVE MODULE RBOX316-ABB-00
  • YASKAWA JACP-317802 AC servo drive
  • YASKAWA JACP-317801 Advanced Process Controller
  • YASKAWA JACP-317120 Power Supply Unit
  • YASKAWA CP-9200SH/SVA servo controller
  • YASKAWA CP-9200SH/CPU Programmable Controller
  • YASKAWA CP-317/DO-01 Digital Output Module
  • YASKAWA CP-317/218IF high-speed communication interface module
  • YASKAWA CP-317/217 IF Communication Interface Module
  • YASKAWA CIMR-M5D2018 High Performance Inverter
  • YASKAWA CACR-HR10BB servo drive
  • YASKAWA 218IF machine controller
  • YOKOGAWA YS1700-100/A06/A31 Programmable Indicator Controller
  • YOKOGAWA KS9-5 * A signal cable
  • YOKOGAWA KS8-5 * A signal cable
  • YOKOGAWA KS2-5 * A DSC signal cable
  • YOKOGAWA PW482-10 power module
  • YOKOGAWA SCP451-11 processor module
  • YOKOGAWA SR1030B62-3MN * 1C High Frequency Signal Processor
  • YOKOGAWA SR1030B62 Analog Input Module
  • YOKOGAWA CP451-10 processor module
  • YOKOGAWA CP451-50 processor module
  • YOKOGAWA AAI143-H50 Analog Input Module
  • YOKOGAWA 22.5 × 17.4 × 10 Compact Industrial Control Module
  • YOKOGAWA AMM42 multiplexer input module
  • YOKOGAWA SDV144-S63 Digital Input Module
  • YOKOGAWA AIP830-111 single player keyboard
  • YOKOGAWA S9361DH-00 Terminal Board Module
  • YOKOGAWA ATK4A-00 S1 KS Cable Interface Adapter
  • YOKOGAWA PW701 power module
  • YOKOGAWA AVR10D-A22010 Duplex V-net Router
  • YOKOGAWA PW441-10 power module
  • YOKOGAWA VI451-10 Communication Interface Module
  • YOKOGAWA VC401-10 Coupling Module
  • YOKOGAWA ALP121 Communication Module
  • YOKOGAWA NFAI841-S00 Analog Input Module
  • YOKOGAWA AIP591 Process Control Module
  • YOKOGAWA AIP578 optical link transceiver
  • YOKOGAWA PW501 power module
  • YOKOGAWA YNT511D fiber optic bus repeater
  • YOKOGAWA AIP171 transceiver control module
  • YOKOGAWA VI702 Vnet/IP Interface Card
  • YOKOGAWA 2302-32-VLE-2 electronic mixer
  • YOKOGAWA ATK4A-00 Cable Interface Adapter
  • YOKOGAWA ALR121-S00 Communication Module
  • YOKOGAWA CP461-50 processor module
  • YOKOGAWA AIP121-S00 Control Module
  • YOKOGAWA UR1800 Recorder
  • YOKOGAWA LC82 * A Industrial Controller
  • YOKOGAWA ANR10D bus node unit
  • YOKOGAWA SDV144-S13 Digital Input Module
  • YOKOGAWA NFAI143-H00 Analog Input Module
  • YOKOGAWA EB501 Bus Interface Module
  • YOKOGAWA CP451-10 Process Control Module
  • YOKOGAWA V0/E1/TCAM/L08 Advanced Process Control Module
  • YOKOGAWA VO/E2/TCDM24/L8 high-precision temperature control module
  • YOKOGAWA 16137-119 high-precision digital input module
  • YOKOGAWA 16114-500 module rack
  • YOKOGAWA PSCDM024DCBAN Key Discrete Module
  • YOKOGAWA 16137-151 Process Control Module
  • YOKOGAWA 16137-188 Process Control Module
  • YOKOGAWA 16137-222 Process Controller
  • YOKOGAWA 16137-223 high-precision temperature transmitter
  • YOKOGAWA 16137-153 Digital Input Module
  • YOKOGAWA 866257000 high-precision temperature controller
  • YOKOGAWA 8596020000 Digital I/O Module
  • YOKOGAWA 866256000 high-precision process control module
  • ABB AFS670 19" Ruggedized Switch AFS670-EREEDDDSSEEEEEEEPZYX05.1.0
  • NI VXIpc-871B Controller
  • YOKOGAWA PSCAMAAN Process Control Analog Input Module
  • YOKOGAWA DR1030B60 servo actuator
  • YOKOGAWA ADV551 Digital Output Module
  • YOKOGAWA AAI543 proposed output module
  • YOKOGAWA LR 4220E Level Transmitter
  • YOKOGAWA SR1008B62 External Wiring Module
  • YOKOGAWA SC200S Control Valve Positioner
  • YOKOGAWA PW301 power module
  • YOKOGAWA NP53 * C Precision Control Module
  • YOKOGAWA F3YD64-1A transistor output module
  • YOKOGAWA F3XD64-3N Industrial Module Controller
  • YOKOGAWA F3WD64-3N High Performance Module Controller
  • YOKOGAWA F3SP21-0N CPU module
  • YOKOGAWA F3PU10-0N AC power module
  • YOKOGAWA F3PU06-0N power module
  • YOKOGAWA F3NC02-0N positioning module
  • YOKOGAWA F3NC01-0N positioning module
  • YOKOGAWA F3LC21-1N Multi Link Module
  • YOKOGAWA F3BU06-0N Base Module
  • FORCE PMC234 control module
  • FORCE CPU-2CE/16 Industrial Control CPU Module
  • Foxboro PBCO-D8-010 FBM I/O cards
  • FOXBORO PBCO-D8-009 Digital Output Module
  • FOXBORO FBM207C RH917GY High Density Contact Induction Input Module
  • FOXBORO AD916AE Digital Control System Module
  • FOXBORO FBM217 discrete input module
  • FOXBORO RH926GH processor module
  • FOXBORO H90 H90C9AA0117S Differential Pressure Transmitter
  • FOXBORO P0926GJ high-precision differential pressure transmitter
  • FOXBORO RH928AW control module
  • FOXBORO N-2AX+DIO signal distribution module
  • FOXBORO RH924WA Fiber Optic Network Adapter
  • FOXBORO P0924JH Control System Module
  • FOXBORO H92 Process Automation System
  • FOXBORO PP0926KN control module
  • FOXBORO P0916FH controller
  • FOXBORO E69F-T-I2-JRS on-site installation signal converter
  • FOXBORO P0926JM Standard 200 Series Baseplates
  • FOXBORO E69F-BI2-S Current Pneumatic Signal Converter