Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Ten thoughts on the evolution of the underlying logic of the new power system

来源: | 作者:佚名 | 发布时间 :2024-01-25 | 1130 次浏览: | Share:

At present, China's dependence on raw materials such as copper, lithium, cobalt, nickel and manganese is as high as 70%. On the one hand, compared with the international, the development of China's new energy industry has a huge advantage of high localization rate, taking the photovoltaic industry as an example, domestic enterprises in the upper and middle reaches of the industry are occupying a leading position in the world. On the other hand, there is still a big gap in China's key equipment and key technologies, such as wind power megawatt main bearing, IGBT, CCUS, hydrogen energy utilization, climate prediction, flexible resources, digital and other core equipment technologies need a high level of scientific and technological self-reliance.

At the same time, data, as a new production factor, will play a two-wheel driving role in the construction of a new power system. On the one hand, the new power system can realize the deep integration of physical system and digital technology, and effectively prevent the security risks caused by information network attacks; On the other hand, ensuring the security of energy and power data, social production data, economic data and other data and high-quality analytical applications will increasingly become a major development factor affecting national economic security and enhancing national competitiveness.

5. The new power system will increasingly evolve into an energy and power resource allocation system with high coupling and efficient operation mainly driven by technology, data, computing power and algorithm, including energy flow, power flow, scarcity flexibility resource flow, information flow, carbon flow and capital flow.

The policy design at different stages of development should focus on the great changes in the operation factors of the new power system, focus on the interaction and high coupling of multi-flow, promote the optimal allocation of energy and power resources, serve the high-quality development of energy and power economy and industrial economy, and promote the process of national carbon to peak carbon neutrality.

The new power system is a deeply coupled system of digital technology and physical system, driven by technology + data + algorithm + computing power, and supported by modern energy network system, information support system, national carbon trading system and energy and power market, enabling the energy industry to optimize the allocation of all factors. Realize the highly coupled and efficient operation of energy flow, power flow, carbon flow, scarce and flexible resource flow, information flow, and capital flow, and promote the high-quality development of energy and power economy and industrial economy.

Therefore, in the future policy design, on the one hand, we should attach great importance to the cultivation of new driving factors such as technology, data, computing power and algorithms, accelerate the development of a new generation of digital technologies such as "big cloud intelligent chain", give full play to the role of new key production factors of data, rely on powerful computing power and algorithms, through massive information data analysis and high-performance computing technology, and open up all aspects of information storage in the source network. Effectively integrate with other production factors such as technology and knowledge, comprehensively improve the operation efficiency of the energy and power system, and serve the new ecology of energy integration development of the industry; On the other hand, it is necessary to fully promote the multi-flow highly coupling including energy flow, power flow, carbon flow, scarce and flexible resource flow, information flow, and capital flow. On the basis of technology-driven empowerment, to promote the construction of a new power system with the digital grid as the hub, with the orderly flow of data flow and information flow, power users, power grid enterprises, power generation enterprises, suppliers and other equipment, people and things to connect, while organically integrated with other energy systems, open up power flow and energy flow.

The flexible and balanced power system enables a high proportion of new energy sources, especially wind, solar and smart grids, as well as flexible resources such as various energy storage, to be integrated with each other. With the promotion and application of blockchain and other digital technologies and data elements in carbon market trading, the carbon market and the power market develop in synergy, and the carbon flow carrying carbon measurement and trading information is imported into the energy flow and the power flow. Through the new decentralized mechanism, new model and new business form, the service flow, information flow, carbon flow and capital flow among all nodes and entities in the system are opened up. To realize the optimal allocation of energy, electricity and social resources.

The new power system will increasingly evolve into a multi-metering everywhere, multi-transaction everywhere, multi-innovation everywhere, and multi-force everywhere, which will promote various social resources, especially idle resources of all parties, to be the most widely mobilized and optimized allocation.

  • FOXBORO P0916VB power supply module
  • GE Hydran M2-X Transformer Condition Monitoring Device
  • FOXBORO P0916VL control module
  • FOXBORO P0916VC High Performance Terminal Cable
  • FOXBORO P0916WG system module
  • FOXBORO P0972ZQ interface channel isolation 8-input module
  • FOXBORO P0973BU high-frequency fiber optic jumper
  • FOXBORO P0926MX Splasher Confluencer
  • FOXBORO P0961S connector module
  • FOXBORO P0903NU system module
  • FOXBORO CM902WM control module
  • FOXBORO P0972VA ATS Processor Module
  • FOXBORO P0916Js digital input terminal module
  • FOXBORO PO961BC/CP40B control module
  • FOXBORO PO916JS Input/Output Module
  • FOXBORO PO911SM Compact Monitoring Module
  • FOXBORO P0972PP-NCNI Network Interface Module
  • FOXBORO P0971XU Control System Module
  • FOXBORO P0971DP Controller
  • FOXBORO P0970VB control module
  • FOXBORO P0970BP (internal) cable assembly
  • FOXBORO P0961EF-CP30B High Performance Digital Output Module
  • FOXBORO P0961CA fiber optic LAN module
  • FOXBORO P0926TM Modular I/O PLC Module
  • FOXBORO P0916BX series control system input/output module
  • FOXBORO P0916AG Compression Period Component
  • FOXBORO P0916AC I/A series module
  • FOXBORO P0912CB I/O Terminal Module
  • FOXBORO P0911VJ high-precision control module
  • FOXBORO P0911QC-C 8-channel isolated output module
  • FOXBORO P0911QB-C High Performance Industrial Module
  • FOXBORO P0903ZP Embedded System Debugging Module
  • FOXBORO P0903ZN control module
  • FOXBORO P0903ZL High Frequency Industrial Module
  • FOXBORO P0903ZE I/A series fieldbus isolation module
  • FOXBORO P0903NW Industrial Control Module
  • FOXBORO P0903NQ control module
  • FOXBORO P0903AA Industrial Control Module
  • FOXBORO FBM205 cable
  • FOXOBORO P0960HA I/A series gateway processor
  • FOXBORO P0926TP high-performance control module
  • FOXBORO P0926KL control module
  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module