Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Synthetic ammonia carbon reduction path

来源: | 作者:佚名 | 发布时间 :2023-11-24 | 349 次浏览: | Share:

I.Because the production process is similar and the emission reduction grips overlap, we will take synthetic ammonia as an example to further clarify each carbon reduction grips in this article.

Demand-side management: The main downstream use of synthetic ammonia is nitrogen fertilizer production, and about 90% of synthetic ammonia is processed into nitrogen fertilizer. Nitrogen fertilizer use in China is projected to have the potential to decline by 40 percent by 2050, driven by a combination of reduced arable land and more efficient fertilizer use.

a. Reduction of cultivated land: China's total cultivated land area is expected to continue the downward trend in the future, from 2 billion mu to nearly 1.8 billion mu, an estimated decline of 10%. Long-term over-cultivation has led to the decline of cultivated land quality, currently China's 2 billion mu of cultivated land has 4% of polluted land, 17.8% of low arable land and more than 80 million mu of unstable farmland, recuperation, return to forest and grass, rotation and fallow is imperative. At the same time, along with the process of urbanization, the rural population is expected to move out further in the future, resulting in some arable land wastage.

b. Improved fertilizer efficiency: Without affecting yields, we project that annual nitrogen fertilizer use per hectare in China has the potential to decline by 30% by 2050 (see Figure V). The per capita arable area of Chinese farms is much lower than that of Western countries, and small farmers lack the knowledge of scientific use of chemical fertilizers, leading to the problem of excessive and blind use of chemical fertilizers in China. The average amount of nitrogen fertilizer used in China's crop hectares is 306 kilograms, much higher than the world average and more than twice that of the United States. The problem has improved in recent years, and during the 13th Five-Year Plan period, the government actively controlled fertilizer use through farmer education and local supervision. In the future, with the integration of land ownership, large farms are expected to gradually replace individual farmers as the mainstream farming model. Large farmers use far less nitrogen fertilizer per hectare than small farmers; At the same time, large farmers are also more willing to adopt optimized farming techniques, such as the use of organic fertilizers, slow-release fertilizers and other new fertilizers, to further improve the efficiency of fertilizer use.

2. Existing carbon reduction technologies: Emerging gasifier and fuel electrification technologies are mature and, if widely applied in the industry, can effectively reduce carbon emissions by more than 50%, but will incur additional capital expenditures and operating costs. Due to the low overall profit level of the coal chemical industry, external thrust is needed to internalize the external cost of carbon emissions in order to improve the application space of these two technologies in the industry.

a. Emerging gasifiers: China's existing gasifiers are still dominated by old fixed beds, and their single-furnace production capacity is low and pollution treatment is difficult, which has been generally eliminated by modern coal chemical industry abroad. With the increase of carbon emission requirements, coal chemical enterprises need to actively replace production capacity, eliminate and upgrade the old fixed bed gasification technology with high coal consumption, and use new high-efficiency pulverized coal gasification and other technologies. It is estimated that by 2030, by upgrading gas equipment, the industry has the potential to reduce coal consumption per unit by 30%, thereby reducing carbon emissions by about 15%.

b. Fuel electrification: Coal-fired electrification, which can eliminate carbon emissions from coal (50% of the total), is a mature technology, but it significantly increases operating costs in high-temperature processes, and is estimated to cost more than $100 to reduce 1 ton of CO2.

3. Emerging carbon emission reduction technologies: CCUS and electrolytic hydrogen, two emerging technologies, are the starting points to solve the last mile of carbon emission reduction in the synthetic ammonia industry. Both of these technologies can reduce carbon emissions in the production process of synthetic ammonia by more than 80%, but they are still in the stage of technological exploration.

A. Carbon capture utilization and storage (CCUS) : CCUS has a good coupling with the development of coal chemical industry, because the carbon dioxide concentration is high, the capture cost is much lower than other industries. According to our estimates, the cost of CO2 capture per ton in the synthetic ammonia industry is about 80 yuan, while in other industries (e.g., cement, electricity) it is more than 200 yuan. This technology can be preferentially used in North China, Northeast China, Inner Mongolia and other places close to oil fields to reduce carbon emission costs through carbon dioxide flooding. In the next 30 years, if the development of CCUS is improved, the construction of transport pipelines and storage facilities, and the formation of industrial synergies with other high-carbon industries, it is expected to further expand the application of the industry.

  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module
  • GE IS410STCIS2A IS400STCIS2AFF Industrial Control Module
  • GE DS200DCFBG2BNC DS200DCFBG1BNC DC Feedback Board
  • GE VME5565 VMIVME-5565-11000 332-015565-110000 P Reflective Memory
  • GE VMIVME-7807 VMIVMME-01787-414001 350-00010078007-414001 D module
  • GE IS220PDOAH1A 336A4940CSP2 Discrete Output Module
  • GE VMIVME-4150 Analog Output Module
  • GE WESDAC D20 PS Industrial Power Module
  • GE 369B1860G0031 servo drive module
  • GE 369B1859G0021 Input/Output Module
  • GE 208D9845P0008 Motor Management Relay
  • GE IS420UCSCH1A-F.V0.1-A Independent Turbine Controller
  • GE D20EME10BASE-T 820-0474 Ethernet Interface Module
  • GE DS200DCFBG2BNC MRP445970 DC Feedback Board
  • GE IC800SSI228RD2-EE servo motor controller
  • GE IS200JPDMG1ACC S1AT005 Digital Input/Output (I/O) Module
  • GE IS200TSVCH1AED servo input/output terminal board
  • GE IS200TTURH1CCC S1DF00Z Terminal Turbine Plate
  • GE IS200TSVCH1ADC S1CX01H servo input-output board
  • GE IS200TRPGH1BDD S1C5029 Trip Solenoid Valve Control Board
  • GE IS220YAICS1A L Analog Input/Output Module
  • GE UCSC H1 IS420UCSCH1A-F-VO.1-A Controller Module
  • GE UCSC H1 IS420UCSCH1A-B Communication Processing Module
  • GE IC697VDD100 Digital Input Module
  • GE V7768-320000 3509301007768-320000A0 Controller Module
  • GE IS410TRLYS1B Relay Output Module
  • GE IS415UCVGH1A V7666-111000 VME Control Card
  • GE IC800SSI216RD2-CE servo motor controller
  • GE VMIVME-5565-010000 332-01565-010000P Reflective Memory
  • GE IC695ALG508-AA Analog Input Module
  • GE IC660EPM100J Power Monitoring and Control Module
  • GE RS-FS-9001 362A1052P004 Redundant Fan System Module
  • GE IS220UCSAH1AK independent processor module
  • GE 369-HI-0-M-0-0-0-E Motor Management Relay
  • GE CIFX50-C0 interface board
  • GE SR469-P5-H-A20-T Motor Management Relay
  • GE WES5120 2340-21005 power module
  • GE WES5120 2340-21003 Control Module
  • GE D20MIC10BASE-T 820-0756 Ethernet Module
  • GE WES13-3 5167-001-0210 Mechanical Relay Output Module
  • GE WES13-3 2508-21001 Control Board Module
  • GE D20ME 526-2005-216943 Input/Output Module