Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Synthetic ammonia carbon reduction path

来源: | 作者:佚名 | 发布时间 :2023-11-24 | 328 次浏览: | Share:

I.Because the production process is similar and the emission reduction grips overlap, we will take synthetic ammonia as an example to further clarify each carbon reduction grips in this article.

Demand-side management: The main downstream use of synthetic ammonia is nitrogen fertilizer production, and about 90% of synthetic ammonia is processed into nitrogen fertilizer. Nitrogen fertilizer use in China is projected to have the potential to decline by 40 percent by 2050, driven by a combination of reduced arable land and more efficient fertilizer use.

a. Reduction of cultivated land: China's total cultivated land area is expected to continue the downward trend in the future, from 2 billion mu to nearly 1.8 billion mu, an estimated decline of 10%. Long-term over-cultivation has led to the decline of cultivated land quality, currently China's 2 billion mu of cultivated land has 4% of polluted land, 17.8% of low arable land and more than 80 million mu of unstable farmland, recuperation, return to forest and grass, rotation and fallow is imperative. At the same time, along with the process of urbanization, the rural population is expected to move out further in the future, resulting in some arable land wastage.

b. Improved fertilizer efficiency: Without affecting yields, we project that annual nitrogen fertilizer use per hectare in China has the potential to decline by 30% by 2050 (see Figure V). The per capita arable area of Chinese farms is much lower than that of Western countries, and small farmers lack the knowledge of scientific use of chemical fertilizers, leading to the problem of excessive and blind use of chemical fertilizers in China. The average amount of nitrogen fertilizer used in China's crop hectares is 306 kilograms, much higher than the world average and more than twice that of the United States. The problem has improved in recent years, and during the 13th Five-Year Plan period, the government actively controlled fertilizer use through farmer education and local supervision. In the future, with the integration of land ownership, large farms are expected to gradually replace individual farmers as the mainstream farming model. Large farmers use far less nitrogen fertilizer per hectare than small farmers; At the same time, large farmers are also more willing to adopt optimized farming techniques, such as the use of organic fertilizers, slow-release fertilizers and other new fertilizers, to further improve the efficiency of fertilizer use.

2. Existing carbon reduction technologies: Emerging gasifier and fuel electrification technologies are mature and, if widely applied in the industry, can effectively reduce carbon emissions by more than 50%, but will incur additional capital expenditures and operating costs. Due to the low overall profit level of the coal chemical industry, external thrust is needed to internalize the external cost of carbon emissions in order to improve the application space of these two technologies in the industry.

a. Emerging gasifiers: China's existing gasifiers are still dominated by old fixed beds, and their single-furnace production capacity is low and pollution treatment is difficult, which has been generally eliminated by modern coal chemical industry abroad. With the increase of carbon emission requirements, coal chemical enterprises need to actively replace production capacity, eliminate and upgrade the old fixed bed gasification technology with high coal consumption, and use new high-efficiency pulverized coal gasification and other technologies. It is estimated that by 2030, by upgrading gas equipment, the industry has the potential to reduce coal consumption per unit by 30%, thereby reducing carbon emissions by about 15%.

b. Fuel electrification: Coal-fired electrification, which can eliminate carbon emissions from coal (50% of the total), is a mature technology, but it significantly increases operating costs in high-temperature processes, and is estimated to cost more than $100 to reduce 1 ton of CO2.

3. Emerging carbon emission reduction technologies: CCUS and electrolytic hydrogen, two emerging technologies, are the starting points to solve the last mile of carbon emission reduction in the synthetic ammonia industry. Both of these technologies can reduce carbon emissions in the production process of synthetic ammonia by more than 80%, but they are still in the stage of technological exploration.

A. Carbon capture utilization and storage (CCUS) : CCUS has a good coupling with the development of coal chemical industry, because the carbon dioxide concentration is high, the capture cost is much lower than other industries. According to our estimates, the cost of CO2 capture per ton in the synthetic ammonia industry is about 80 yuan, while in other industries (e.g., cement, electricity) it is more than 200 yuan. This technology can be preferentially used in North China, Northeast China, Inner Mongolia and other places close to oil fields to reduce carbon emission costs through carbon dioxide flooding. In the next 30 years, if the development of CCUS is improved, the construction of transport pipelines and storage facilities, and the formation of industrial synergies with other high-carbon industries, it is expected to further expand the application of the industry.

  • ABB 3HAB8859-1/03A Industrial Control Module
  • ABB 3HAB9271-1/01B Robotic Control Interface Module
  • ABB 3HAC5498-1 High-Performance Control Module
  • ABB 3HAC5518-1 Industrial Control Module
  • ABB 3HAC5497-1 Industrial Control Module
  • ABB 3HAC7344-1 Mains line filter unit
  • ABB 3HAC7681-1 Process Interface Module
  • ABB 3HAC6428-1/04 high-performance control module
  • ABB 3HAC6157-1 Floppy sign/supply cable
  • ABB 3HAC10847-1 Ethernet on front,Harness
  • ABB 3HAC5566-1 Industrial Communication Bus Cable
  • ABB 3HAC9710-1 Heat exchanger unit
  • ABB IMFECI2 Industrial Control Module
  • ABB IMDS014 Digital Slave Output Module
  • ABB INIT03 Control Module
  • ABB 3HAC031683-004 Cable Teach Pendant 30m
  • ABB HAC319AEV1 High-Performance Control Module
  • ABB UFC092BE01 Binary input module
  • ABB DAPC100 3ASC25H203 Industrial Control Board
  • ABB 57160001-KX DSDO 131 Digital Output Unit
  • ABB 3HAC4776-1/1 Industrial Control Module
  • ABB DSTF610 terminal
  • ABB YB560100-EA S3 Industrial Control Module
  • ABB XO16N1-B20 XO16N1-C3.0 High-Performance Industrial Control Module
  • ABB TU804-1 Programmable Logic Controller (PLC) Module
  • ABB TU515 I/O terminal unit
  • ABB TK516 Connection Cable with Contacts
  • ABB SPCJ4D34-AA Industrial Ethernet I/O System Module
  • ABB SPAD346C Integrated Differential Relay
  • ABB 1SAM101904R0003 SK-11 Signal contact 1NO+1NC
  • ABB SE96920414 YPK112A Communication Module
  • ABB SC610 3BSE001552R1 Submodule Carrier
  • ABB SC513 PLC Analog Input Module
  • ABB SAFT110 Advanced Safety Termination Module
  • ABB RVC6-5A Control Module
  • ABB RB520 Linear Motion Controller Module
  • ABB R1.SW2/3 Industrial Control Module
  • ABB PU517 Controller Automation System
  • ABB PS130/6-75-P Industrial Control Module
  • ABB 3BSE008062R1 PM633 Processor Module
  • ABB L110-24-1 Industrial Control Module
  • ABB IMDSO14 Digital Slave Output Module
  • ABB DSU10 Control Module
  • ABB DSQC627 3HAC020466-001 Advanced Power Supply Module
  • ABB DSQC354 Industrial I/O Module
  • ABB DSQC352 High Performance Input/Output Module
  • ABB 37911-4-0338125 Control Module
  • ABB DSPC172 CPU Module
  • ABB DSBB175 Industrial PLC Expansion Module
  • ABB CR-M4LS Industrial Control Module
  • ABB CI626A 3BSE005029R1 Communication Interface Module
  • ABB BB510 (DC5256) Digital Control Module
  • ABB 61615-0-1200000 High-Precision Industrial Controller
  • ABB 3HNE 00313-1 TILLV.0317 Machine No. 64-25653
  • ABB 3HNA000512-001 Control Module
  • ABB 3HAC025466-001 Industrial Control Module
  • ABB 3HAB8101-8/08Y Industrial Control Module
  • ABB 3BHB003689 Multifunction Controller Module
  • ABB PXBHE65 206-00212 power module
  • ZUNKU 6203-2RS Deep Groove Ball Bearing
  • ZUNKU 6201-2RS Deep Groove Ball Bearing
  • ZYCOM IGLACS01281 Control Module
  • Zygo 8010-0105-02 ZMI-501 Displacement Measurement Interferometer
  • Zygo 1115-801-346 laser head cable
  • ZYGO HSSDC2 TO HSSDC2 CABLE 1115-800-055
  • ZYGO HSSDC TO HSSDC2 CABLE 1115-800-056
  • ZYGO ZMI 4104C Measurement Electronics Board
  • ZYGO ZMI-2002 8020-0211 Measurement Board
  • ZYGO 7702 8070-0102-35 Laser Head
  • ZYGO ZMI 7702 8070-0102-01X Laser Head
  • ZYGO ZMI-4004 4-Axis VME64x Measurement Board
  • ZYGO PC200 CS1115-801-346 Laser interferometer cable
  • ZYGO 8010-0105-01 ZMI Power Supply
  • ZYGO ZMI-2002 8020-0211-1-J Laser system measurement board card
  • ABB 35AE92 control card
  • ABB 200900-004 I/O Adapter PLC Board
  • Siemens 6ES7193-4CA40-0AA0 ET 200S Electronic Module
  • Siemens 6AV2124-2DC01-0AX0 Comfort Panel
  • Siemens 6ES7421-7DH00-0AB0 Digital Input Module
  • Siemens 6ES7350-2AH01-0AE0 Counter Module
  • Siemens 6ES7231-0HC22-0XA0 Analog Input Expansion Module
  • Siemens ET200SP 6ES7193-6PA00-0AA0 server module
  • Siemens 6ES7193-4JA00-0AA0 Terminal Module
  • Siemens 6AG1204-2BB10-4AA3 Ethernet Switch
  • SIEMENS 6GK1105-2AA10 SIMATIC NET series optical switching module (OSM ITP62)
  • Schneider Modicon Quantum 140CPU65260 Unity Processor
  • Schneider Modicon Quantum 140ACO02000 Analog Output Module
  • Schneider Modicon Quantum 140CPS11420 power module
  • Allen-Bradley 1747-CP3 SLC ™ Series of programming cables
  • Kollmorgen S33GNNA-RNNM-00 - Brushless Servo Motor
  • Kollmorgen 6sm56-s3000-g-s3-1325 - Servo Motor
  • Kollmorgen AKM52K-CCCN2-00 - Servo Motor
  • Kollmorgen PSR3-230/75-21-202 - Power Supply
  • Kollmorgen akm24d-anc2r-00 - Servo Motor
  • Kollmorgen AKM22E-ANCNR-00 - Servo Motor
  • Kollmorgen S60300-550 - Servo Drive
  • Kollmorgen B-204-B-21 - Servomotor
  • Kollmorgen AKM21E-BNBN1-00 - Servo Motor
  • Kollmorgen TT2953-1010-B - DC Servo Motor
  • Kollmorgen pa8500 - Servo Power Supply
  • Kollmorgen BDS4A-210J-0001-207C2 - Servo Drive
  • Kollmorgen TTRB1-4234-3064-AA - DC Servo Motor
  • Kollmorgen MH-827-A-43 - Servo Motor
  • Kollmorgen AKM24D-ACBNR-OO - Servo Motor
  • Kollmorgen 00-01207-002 - Servo Disk DC Motor
  • Kollmorgen AKM21C-ANBNAB-00 - Servo Motor
  • Kollmorgen PSR3-208/50-01-003 - Power Supply
  • Kollmorgen 6SM56-S3000 - Servo Motor
  • Kollmorgen DBL3H00130-B3M-000-S40 - Servo Motor
  • Kollmorgen 6SN37L-4000 - Servo Motor
  • Kollmorgen AKM65K-ACCNR-00 - Servo motor
  • Kollmorgen 6SM56-L3000-G - Servo Motor
  • Kollmorgen AKMH43H-CCCNRE5K - Servo Motor
  • Kollmorgen PSR4/52858300 - Power Supply
  • Kollmorgen KBM-79H03-E03 - Direct Drive Rotary Motor
  • Kollmorgen AKM33E-ANCNDA00 - Servo Motor
  • Kollmorgen U9M4/9FA4T/M23 - ServoDisc DC Motor
  • Kollmorgen AKM13C-ANCNR-00 - Servo Motor
  • Kollmorgen AKM43L-ACD2CA00 - Servo Motor
  • Kollmorgen AKM54K-CCCN2-00 - Servo Motor
  • Kollmorgen M-605-B-B1-B3 - Servo Motor
  • Kollmorgen AKD-P00606-NBAN-0000 - Rotary Drive
  • Kollmorgen 6SM-37M-6.000 - Servo Motor
  • Kollmorgen A.F.031.5 - Sercos Interface Board
  • Kollmorgen 918974 5054 - Servo PWM
  • Kollmorgen U12M4 - ServoDisc DC Motor
  • Kollmorgen AKD-B00606-NBAN-0000 - Servo Drive
  • Kollmorgen MV65WKS-CE310/22PB - Servo Drive