Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Analysis of the development trend of China's iron ore mining technology in the "13th Five-Year Plan"

来源: | 作者:佚名 | 发布时间 :2024-02-01 | 799 次浏览: | Share:

With the continuous advancement of mining modernization, mineral resources are constantly consumed, and the scale of mining is constantly expanding, and the expansion of mining scale drives the continuous development of mining technology. At present, due to the continuous sharp decline in iron ore prices, the development of domestic iron ore enterprises is facing severe challenges, the deterioration of resource conditions makes it more difficult to mine, and the development of social environment also puts forward new requirements for mine development. Therefore, during the "13th Five-Year Plan" period, in order to cope with the changes in the industry situation and adapt to the requirements of The Times, it is necessary to continuously develop mining technology, reduce costs and increase efficiency through the application of new technologies and technological transformation measures, improve the competitiveness of enterprises, and steadily improve the level of mining technology in China.

1. Development status

After decades of development, especially more than a decade in the new century, the mining technology level of China's iron ore industry has made obvious progress.

(1) Open pit mining

In the open pit mining, the mining process is more mature, the mode of transportation is more diversified and efficient, with the application of steep mining, continuous semi-continuous mining process, mobile crushing station, steep slope railway transportation, vibration feeder loading station, automobile - elevator and other technologies, waste free mining technology, mining digitization, intelligent and other advanced technologies. Mine production efficiency has been significantly improved.

(1) Staging mining technology. Compared with full-range mining, phased mining has the advantages of provincial investment, quick effect, and less infrastructure investment to reach production as soon as possible. Some large steeply inclined open-pit mines in China have successfully realized the stage mining technology, such as Nanfen Iron mine, Shuichang Iron mine, Qidashan Iron Mine and so on.

(2) Intermittent continuous transportation technology. The discontinuous production process has been successfully applied in the deep concave open pit mine in China. The system is mainly composed of two parts, the discontinuous part refers to the automobile or locomotive transportation, and the continuous transportation part refers to the crusher tape machine and the soil discharge machine. With the development of open pit mining in China to deep mining, the significance of this technology is becoming more and more prominent. At present, the technology has been applied in Qidashan Iron ore, Shuichang Iron ore, Donganshan Iron ore, Dagushan Iron ore, Nanfen Iron ore and so on.

(3) High step mining. Step height is the main parameter of open-pit stope, increasing step height is conducive to improving the efficiency of penetration and explosion, simplifying and shortening the transportation line, increasing the amount of stage ore and improving the continuity of operation. In recent years, with the gradual popularization of large shovel equipment, high step mining technology is more and more favored by mining enterprises, the domestic open pit iron ore step height generally reaches 12 meters, Qidashan iron mine step height has reached 15 meters.

(4) Steep mining. Since the 1970s, metal mines in China began to carry out experimental research on steep mining technology. During the "Eighth Five-Year Plan" period, steep mining was included in the national science and technology research project, and carried out large-scale industrial test research in Nanfen open-pit mine, which comprehensively and systematically revealed the technological characteristics of steep mining, laid the technical foundation for the production and construction of Nanfen Iron mine, and provided practical experience for the technical transformation, new construction and expansion of large and medium-sized open-pit mines in China. Steep mining has been widely applied in open-pit iron mines in China because of its advantages such as small initial stripping amount, small amount of infrastructure works, short construction period and short final slope exposure time.

2. Underground mining

Underground mining technology is a technical field that has carried out the most extensive scientific research work and achieved the most scientific and technological achievements in more than 60 years since 1949. A large number of technical achievements have been made in the aspects of tunneling, mining methods, mine filling, etc. With these achievements as technical support, modern underground mines such as Meishan Iron Mine and Jingtieshan Iron Mine have been built. Therefore, it promotes the rapid development of underground mining technology in our country, and makes the technology of some mines reach the international advanced level.

(1) Develop modes of transportation. After years of development, the domestic underground iron ore is mainly developed by the joint development of shaft and slope. At the same time, some mines still adopt other development methods in combination with their own characteristics. Taking Dahongshan Iron Mine as an example, the mine adopts the joint development mode of inclined shaft taping machine - trackless ramp - blind shaft to replace shaft upgrading, reduce infrastructure investment, and be innovative, reaching the international advanced level.

  • Metso A413177 Digital Interface Control Module
  • METSO A413222 8-Channel Isolated Temperature Input Module
  • Metso A413313 Interface Control Module
  • METSO D100532 Control System Module
  • METSO A413310 8-Channel Digital Output Module
  • METSO A413659 Automation Control Module
  • Metso D100314 Process Control Interface Module
  • METSO A413665 8-Channel Analog Output Module
  • METSO A413654 Automation Control Module
  • Metso A413325 Interface Control Module
  • METSO A413110 8-Channel Analog Input Module
  • METSO A413144 Automation Control Module
  • Metso A413160 Digital Interface Control Module
  • METSO A413152 8-Channel Digital Input Module
  • METSO A413240A Automation Control Module
  • METSO A413146 Digital Interface Control Module
  • METSO A413150 Multi-Role Industrial Automation Module
  • METSO A413125 Automation Control / I/O Module
  • Metso A413111 Interface Control Module
  • METSO A413140 Automation Control Module
  • METSO 020A0082 Pneumatic Control Valve Component
  • METSO 02VA0093 Automation Control Module
  • METSO 02VA0153 Actuator Control Module
  • METSO 02VA0190 Automation Control Module
  • Metso 02VA0193 Pneumatic Control Valve Component
  • METSO 02VA0175 Valve Actuator Module
  • METSO D100308 Industrial Control Module
  • MOOG QAIO2/2-AV D137-001-011 Analog Input/Output Module
  • MOOG D136-002-002 Servo Drive or Control Module
  • MOOG D136-002-005 Servo Drive Control Module
  • MOOG D136E001-001 Servo Control Card Module
  • MOOG M128-010-A001B Servo Control Module Variant
  • MOOG G123-825-001 Servo Control Module
  • MOOG D136-001-008a Servo Control Card Module
  • MOOG M128-010 Servo Control Module
  • MOOG T161-902A-00-B4-2-2A Servo-Proportional Control Module
  • MOTOROLA 21255-1 Electronic Component Module
  • MOTOROLA 12967-1 / 13000C Component Assembly
  • MOTOROLA 01-W3914B Industrial Control Module
  • Motorola MVME2604-4351 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME162-513A VMEbus Embedded Computer Board
  • MOTOROLA MPC2004 Embedded PowerPC Processor
  • Motorola MVME6100 VMEbus Single Board Computer
  • MOTOROLA MVME162PA-344E VMEbus Embedded Computer Board
  • MOTOROLA RSG2PMC RSG2PMCF-NK2 PMC Expansion Module
  • Motorola APM-420A Analog Power Monitoring Module
  • MOTOROLA 0188679 0190530 Component Pair
  • Motorola 188987-008R 188987-008R001 Power Control Module
  • MOTOROLA DB1-1 DB1-FALCON Control Interface Module
  • MOTOROLA AET-3047 Antenna Module
  • Motorola MVME2604761 PowerPC VMEbus Single Board Computer
  • MOTOROLA MVME761-001 VMEbus Single Board Computer
  • MOTOROLA 84-W8865B01B Electronic System Module
  • Motorola MVIP301 Digital Telephony Interface Module
  • MOTOROLA 84-W8973B01A Industrial Control Module
  • MOTOROLA MVME2431 VMEbus Embedded Computer Board
  • MOTOROLA MVME172PA-652SE VMEbus Single Board Computer
  • Motorola MVME162-223 VMEbus Single Board Computer
  • MOTOROLA BOARD 466023 Electronic Circuit Board
  • Motorola MVME333-2 6-Channel Serial Communication Controller
  • MOTOROLA 01-W3324F Industrial Control Module
  • MOTOROLA MVME335 VMEbus Embedded Computer Board
  • Motorola MVME147SRF VMEbus Single Board Computer
  • MOTOROLA MVME705B VMEbus Single Board Computer
  • MOTOROLA MVME712A/AM VMEbus Embedded Computer Board
  • MOTOROLA MVME715P VMEbus Single Board Computer
  • Motorola MVME172-533 VMEbus Single Board Computer
  • Motorola TMCP700 W33378F Control Processor Module
  • MOTOROLA MVME188A VMEbus Embedded Computer Board
  • Motorola MVME712/M VME Transition Module
  • Motorola 30-W2960B01A Industrial Processor Control Module
  • MOTOROLA FAB 0340-1049 Electronic Module
  • Motorola MVME162-210 VME Single Board Computer
  • Motorola MVME300 VMEbus GPIB IEEE-488 Interface Controller
  • MOTOROLA CPCI-6020TM CompactPCI Processor Board
  • Motorola MVME162-522A VMEbus Single Board Computer
  • MOTOROLA MVME162-512A VMEbus Single Board Computer
  • MOTOROLA MVME162-522A 01-W3960B/61C VMEbus Single Board Computer
  • MOTOROLA MVME162-220 VMEbus Embedded Computer Board
  • Motorola MVME162-13 VMEbus Single Board Computer
  • MOTOROLA MVME162-10 VMEbus Single Board Computer
  • RELIANCE 57C330C AutoMax Network Interface Module
  • RELIANCE 6MDBN-012102 Drive System Module
  • RELIANCE 0-60067-1 Industrial Drive Control Module
  • Reliance Electric 0-60067-A AutoMax Communication Module
  • RELIANCE S0-60065 System Control Module
  • RELIANCE S-D4006-F Industrial Drive Control Module
  • Reliance Electric S-D4011-E Shark I/O Analog Input Module
  • RELIANCE S-D4009-D Drive Control Module
  • RELIANCE S-D4043 Drive Control Module
  • Reliance DSA-MTR60D Digital Servo Motor Interface Module
  • RELIANCE 0-60063-2 Industrial Drive Control Module
  • RELIANCE S-D4041 Industrial Control Module
  • Reliance Electric SR3000 2SR40700 Power Module
  • RELIANCE VZ7000 UVZ701E Variable Frequency Drive Module
  • RELIANCE VZ3000G UVZC3455G Drive System Module
  • Reliance Electric S-D4039 Remote I/O Head Module
  • RELIANCE 0-57210-31 Industrial Drive Control Module
  • RELIANCE 0-56942-1-CA Control System Module
  • Reliance Electric 0-57100 AutoMax Power Supply Module
  • RELIANCE 0-54341-21 Industrial Control Module
  • RELIANCE 0-52712 800756-21B Drive Interface Board
  • KEBA PS242 - Power Supply Module
  • KEBA BL460A - Bus Coupling Module
  • KEBA K2-400 OF457/A Operating Panel
  • KEBA T200-M0A-Z20S7 Panel PC
  • KEBA K2-700 AMT9535 Touch Screen Panel
  • KEBA T20e-r00-Am0-C Handheld Terminal
  • KEBA OP350-LD/J-600 Operating Panel
  • KEBA 3HAC028357-001 DSQC 679 IRC5 Teach Pendant
  • KEBA E-32-KIGIN Digital Input Card
  • KEBA FP005 Front Panel
  • KEBA BT081 2064A-0 Module
  • KEBA FP-005-LC / FP-004-LC Front Panel
  • KEBA SI232 Serial Interface
  • KEBA T70-M00-AA0-LE KeTop Teach Pendant
  • KEBA KEMRO-BUS-8 Bus Module
  • KEBA IT-10095 Interface Terminal
  • KEBA RFG-150AWT Power Supply Unit
  • KEBA C55-200-BU0-W Control Unit
  • KEBA Tt100-MV1 Temperature Module
  • KEBA E-HSI-RS232 D1714C / D1714B Interface Module
  • KEBA E-HSI-CL D1713D Interface Module
  • KEBA D1321F-1 Input Module
  • KEBA E-32-D Digital Input Card
  • KEBA C5 DM570 Digital Module
  • KEBA XE020 71088 Module
  • KEBA E-16-DIGOUT Digital Output Card