Cascade hydropower station recycling
Many rivers in China have adopted the cascade development model to build series of hydropower stations, such as the Jinsha River and Dadu River. For the newly built or already built cascade hydropower station group, in the adjacent two hydropower stations, the above hydropower station reservoir as the upper reservoir, the next level as the lower reservoir, according to the actual terrain to choose the appropriate intake, can be integrated "power generation + pumping" and "power generation + pumping power generation" two modes for development. This model is suitable for the transformation of cascade hydropower stations, and can greatly improve the adjustment capacity and adjustment time period of cascade hydropower stations, and the benefit is remarkable. FIG. 2 is the layout of hydropower station for cascade development of a river in China. The dam site of the upper hydropower station is basically less than 50 kilometers from the intake of the lower hydropower station.
In situ equilibrium
The "local balance" mode refers to the construction of wind power and photovoltaic power generation projects near the hydropower station, and the self-regulation balance combined with the operation of the hydropower station to achieve stable power output in accordance with the scheduling requirements. Considering that major hydropower units operate according to power system scheduling, this model can be applied to run-off power stations and some small hydropower plants that are not suitable for large-scale transformation and are usually not scheduled as conventional peak and frequency regulation functions. It can flexibly control the operation output of hydropower units, tap its short-term adjustment capacity, and achieve local balanced and stable power output. At the same time, improve the utilization of existing transmission line assets.
Water transfer and power peaking complex
The mode of "water transfer and power peaking complex" is based on the construction concept of water transfer pumped storage power station, combined with large-scale cross-basin water transfer and other major water conservancy projects, to build a number of reservoirs and water diversion facilities, and use the water head drop between reservoirs to build a number of pumping stations, conventional hydropower and pumped storage power stations to form a power generation and storage complex. In the process of transferring water from high-altitude water source to low-altitude area, the "water transfer and power peak balancing complex" can make full use of the head drop to obtain power generation income while realizing long-distance water transfer and reducing water transfer cost. At the same time, the "water transfer and power peaking complex" can be used as a large-scale dispatchable load and power supply of the power system to provide regulation services for the system. In addition, the complex can also be combined with seawater desalination projects, etc., to achieve comprehensive applications of water resources development and power system regulation.
Seawater pumped storage
The seawater pumped storage power station can choose a suitable location in the seaside to build the upper reservoir, and the sea as the lower reservoir. In the case that the site selection of conventional pumped storage power station is increasingly difficult, the relevant departments of the state have paid attention to the seawater pumped storage power station and carried out resource survey and prospective technology research and test. Seawater pumped storage can also be combined with tidal energy, wave energy, offshore wind power and other comprehensive development, the construction of large storage capacity and long regulation period of pumped storage power stations.
In addition to the runoff hydropower station and some small hydropower stations with no storage capacity, most of the hydropower stations with a certain reservoir capacity can be studied and carried out pumped storage function transformation. In new hydropower stations, pumped storage units of a certain capacity can be designed and arranged as a whole. Preliminary estimates, the application of the new development mode, can quickly add high-quality peak load capacity of at least 100 million kilowatts; The use of "water transfer and power peak balancing complex" and seawater pumped storage power generation can also bring extremely considerable high-quality peak balancing capacity, which is of great significance for the construction of new power systems and safe and stable operation, and has huge economic and social benefits.
Proposals for the innovative development of hydropower
First, organize the top-level design of hydropower innovation and development as soon as possible, and issue guidelines to support hydropower innovation and development on the basis of this work. Research has been carried out on major issues such as the guiding ideology, development positioning, basic principles, planning priorities and layout of hydropower innovation and development, and on this basis, development plans have been formulated, development stages and expectations have been clearly defined, and market players have been guided to carry out project development in an orderly manner.
email:1583694102@qq.com
wang@kongjiangauto.com