Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Power generation + pumped power generation

来源: | 作者:佚名 | 发布时间 :2023-12-06 | 238 次浏览: | Share:

Demand analysis of current situation and innovative development of hydropower

Innovative development situation

The global energy transformation is accelerating, the proportion of new energy sources such as wind power and photovoltaic power generation is rapidly increasing, and the planning, construction, safe operation and economic dispatch of traditional power systems are facing new challenges and problems. From 2010 to 2021, the global wind power installed capacity has maintained rapid growth, with an average growth rate of 15%; China is growing at an average rate of 25% a year; The growth rate of global photovoltaic power generation in the past 10 years has reached 31%. The power system with a high proportion of new energy is faced with major problems such as difficulty in balancing supply and demand, increased difficulty in system operation control and increased stability risk caused by the reduction of moment of inertia, a substantial increase in demand for peak load capacity and a rise in system operation costs, and it is urgent to work together from the power supply, grid and load side to promote the solution of these problems. Hydropower is an important regulating power supply, with large moment of inertia, fast response speed, flexible operation mode and other characteristics, in solving these new challenges and problems has a natural advantage.

The level of electrification continues to improve, and the requirements for safe and reliable power supply in economic and social operations continue to increase. Over the past 50 years, the level of global electrification has continued to improve, the proportion of electricity in terminal energy use has gradually increased, and the terminal electric energy substitution represented by electric vehicles has accelerated. Modern economy and society are increasingly dependent on electric power, and electric power has become the basic means of production for economic and social operation. Safe and reliable power supply is an important guarantee for modern people's production and life. Large-scale power outage not only brings huge economic losses, but also may bring serious social chaos, power security has become the core content of energy security and even national security. The external service of the new power system requires the continuous improvement of the reliability of the safe power supply, while the internal development faces the continuous increase of the risk factors that seriously threaten the power safety.

New technologies continue to emerge and be applied in the power system, and the degree of intelligence and complexity of the power system are significantly improved. Power electronic devices are widely used in all aspects of power transmission and distribution, resulting in significant changes in the load characteristics and system characteristics of power system, leading to profound changes in the operating mechanism of power system. Information communication, control and intelligent technologies are widely used in all aspects of power system production and management, and the intelligence level of power system has been significantly improved, which can adapt to large-scale online analysis and decision support analysis. Distributed generation is connected to the user side of the distribution network on a large scale, and the power flow direction of the grid has changed from unidirectional to bidirectional or even multi-directional. Various types of smart electrical equipment emerge in an endless stream, smart meters are widely used, the number of power system access terminals is growing exponentially, and information security has become an important source of risk for power systems.

The reform and development of electric power is getting better, and the policy environment such as electricity price is gradually improving. With the rapid development of China's economy and society, the power industry has experienced a huge leap from small to large, from weak to strong, from following to leading. In the system, from the government to the enterprise to run electricity, from one plant network to separate the plant network, moderate competition, from the plan gradually to the market, and walked out of a road suitable for China's national conditions of power development. China's capacity and level of power technology and equipment manufacturing and construction are among the world's best, and the indicators of universal power service and power business environment are gradually improving. China has built and operated the world's largest and most technologically advanced power system. China's electricity market has made steady progress, and the construction path of a unified electricity market from local to regional to national is clear, adhering to the Chinese line of seeking truth from facts. Policy mechanisms such as electricity price have gradually been straightened out, and an electricity price mechanism suitable for the development of pumped storage has been initially established, providing a policy environment for the realization of the economic value of the innovative development of hydropower.

The boundary conditions of hydropower planning, design and operation have changed significantly. The core task of traditional hydropower station planning and design is to select the technically feasible and economically reasonable scale and operation mode of the power station, which is usually considered under the premise of the optimal objective of comprehensive utilization of water resources. It is necessary to comprehensively consider the requirements of flood control, irrigation, shipping and water supply, and carry out comprehensive economic, social and environmental benefit comparison and selection. Under the background of continuous technological breakthroughs and the continuous increase of the proportion of wind power and photovoltaic, the power system objectively needs to make full use of hydraulic resources, enrich the operation mode of hydropower stations, and play greater adjustment functions such as peak regulation, frequency regulation and phase regulation, and many previously unfeasible goals in technology, equipment and construction have become economically and technologically feasible. The original unidirectional model of water-storage and water-release power generation can no longer meet the requirements of the new power system, so it is necessary to combine the model of pumped storage power station to greatly improve the regulating capacity of hydropower station. At the same time, in view of the limitations of short time scale regulation power sources such as pumped storage power stations in promoting the consumption of new energy sources such as wind power and photovoltaic power generation, and it is difficult to undertake the task of safe supply, it is objectively necessary to increase the storage capacity of reservoirs to improve the regulation time cycle of conventional hydropower, so as to make up for the gap in system regulation capacity caused by the withdrawal of coal power.

Demand for innovative development

It is urgent to accelerate the development of hydropower resources, increase the proportion of hydropower in the new power system, and play a greater role. In the context of the "double carbon" goal, the total installed capacity of wind power and photovoltaic power generation will reach more than 1.2 billion kilowatts in 2030; It is expected to reach 5 billion to 6 billion kilowatts by 2060. In the future, the new power system has a huge demand for regulating resources, and hydropower is the best regulating power source. China's hydropower technology can be developed installed capacity of 687 million kilowatts, by the end of 2021, has developed 391 million kilowatts, the development rate of about 57%, far lower than the 90% development rate of some developed countries in Europe and the United States. Considering the long development cycle of hydropower projects (usually 5 to 10 years), while the development cycle of wind power and photovoltaic power generation projects is relatively short (usually 0.5 to 1 year, or even shorter) and the rapid development, it is urgent to speed up the development progress of hydropower projects, build as soon as possible and play a role as soon as possible.

It is urgent to change the development mode of hydropower generation to meet the new requirements of new power system peak regulation. Under the constraint of "dual carbon" target, the future power supply structure determines the huge requirements brought by the operation of the power system for peak load balancing, and this is not a problem that can be solved by the scheduling combination and market forces, but a basic technical feasibility problem. Only on the premise of technical feasibility, through market guidance, scheduling and operation control, the economic security and stable operation of the power system can be realized. For the traditional hydropower station in operation, it is urgent to systematically optimize the utilization of existing storage capacity and facilities, appropriately increase the renovation investment when necessary, and do everything possible to improve the regulation capacity. For the newly planned and constructed conventional hydropower stations, it is urgent to consider the major boundary condition changes brought about by the new power system, and plan and build flexible and adjustable hydropower stations with long and short time scales according to local conditions. As for pumped storage power, the construction should be accelerated under the condition that the adjustment capacity of short time scale is seriously insufficient. In the long run, we should consider the demand of the system for short time scale peak load capacity, and formulate its development plan scientifically. For the water-transfer pumped storage power station, it should be combined with the cross-regional water transfer needs of national water resources, not only as a cross-basin water transfer project, but also as a power system regulation resource for comprehensive utilization, and if necessary, it can also be combined with seawater desalination project overall planning and design.

It is urgent to promote hydropower generation to create greater economic and social value while ensuring the safe operation of the new power system. Based on the constraints of the development goal of carbon peaking and carbon neutrality in the power system, new energy sources will gradually become the main force in the power supply structure of the power system in the future, and the proportion of high-carbon power sources such as coal power will gradually decrease. According to data from a number of research institutions, under the scenario of large-scale withdrawal of coal power, by 2060, China's wind power and photovoltaic power generation capacity will account for about 70%; The total installed hydropower capacity considering pumped storage is about 800 million kilowatts, accounting for about 10%. In the future power supply structure, hydropower is a relatively reliable and flexible and adjustable power supply, which is the cornerstone power supply to ensure the safe, stable and economic operation of the new power system, and it is urgent to change from the current "power generation is mainly and regulation is auxiliary" to the development and operation mode of "regulation is mainly and power generation is auxiliary". Accordingly, the economic benefits of hydropower enterprises should get due benefits under the background of greater value, and the income of hydropower enterprises should also increase significantly the income of providing adjustment services for the system on the basis of the original power generation income.

It is urgent to carry out the innovation of technical standards and policy system of hydropower generation to ensure the efficient and sustainable development of hydropower generation. In the future, the new power system objectively requires that the innovative development of hydropower generation must be accelerated, and the existing relevant technical standards and policy systems also need to be corresponding to the innovative development in order to promote the efficient development of hydropower generation. In terms of standards and specifications, it is urgent to optimize the standards and specifications of planning, design, operation and maintenance based on the pilot demonstration and verification based on the technical requirements of the new power system for conventional hydropower stations, pumped storage power stations, hybrid power stations, and water transfer pumped storage power stations (including pumping stations), so as to ensure the orderly and efficient innovative development of hydropower generation. In terms of policies and systems, it is urgent to study and formulate incentive policies to guide, support and encourage the innovation and development of hydropower generation, and it is also urgent to make system designs such as market and electricity price for the conversion of new value of hydropower generation into economic benefits, and encourage enterprises to actively carry out innovation and development technology investment, pilot demonstration and large-scale development.

Innovative development path and prospect of hydropower generation

The innovative development of hydropower generation is an urgent need to build a new type of power system, and it is necessary to adhere to the principle of local conditions and comprehensive policies, and adopt different technical solutions for different types of hydropower projects that have been built and planned. It should not only take into account the functional needs of power generation and peak regulation, frequency regulation and phase regulation, but also take into account the comprehensive utilization of water resources and the construction of adjustable power loads. Finally, the optimal scheme is determined by comprehensive benefit evaluation. By improving the regulation capacity of conventional hydropower and building a comprehensive group of cross-basin water transfer pumped storage power stations (pumping stations), it has significant economic benefits compared with new pumped storage power stations. Overall, there are no insurmountable technical obstacles to the innovation and development of hydropower generation, and the development space is huge, and the economic and environmental benefits are outstanding, which deserves great attention and accelerated large-scale development on the basis of pilot practice.

"Power generation + pumping" mode refers to the use of existing hydropower DAMS and other hydraulic buildings and power transmission and transformation facilities, select a suitable place downstream of the hydropower station outlet to build a rolling dam to form a lower reservoir, add pumping pumps, pipelines and other equipment and facilities, take the original reservoir as the upper reservoir, and increase the pumping function during the off-peak load of the power system on the basis of the power generation function of the original hydropower station. In order to increase the pumped storage capacity of the original hydropower station, the regulation capacity of the hydropower station will be improved (see Figure 1). The lower reservoir can also be constructed separately at a suitable location downstream of the hydropower station. When the lower reservoir is built downstream of the outlet of the hydropower station, the water level control should not affect the power generation efficiency of the original hydropower station. Considering the functional requirements such as optimization of operation mode and participation in phase regulation, the pump should be matched with a synchronous motor. This mode is usually suitable for the functional transformation of the hydropower station in operation, the equipment and facilities are flexible and simple, and it has the characteristics of less investment, short construction period and quick effect.

"Power generation + Pumped power Generation"

Compared with the "power generation + pumping" model, the main difference is that the pump is changed into a pumped storage unit, which directly increases the function of pumped storage of the original conventional hydropower station, so as to enhance the regulation capacity of the hydropower station. The setting principle of the lower reservoir is the same as that of the "generation + pumping" mode. In this mode, the original reservoir can be used as the lower reservoir and the upper reservoir can be built in a suitable place. For newly built hydropower stations, pumped storage units of a certain capacity may be installed in addition to certain conventional generating units. If the maximum output of a single hydropower station is assumed to be P1 and the pumped storage power is increased to P2, the power operation interval of the station relative to the power system will be expanded from (0,P1) to (-P2,P1+P2).

Cascade hydropower station recycling

Many rivers in China have adopted the cascade development model to build series of hydropower stations, such as the Jinsha River and Dadu River. For the newly built or already built cascade hydropower station group, in the adjacent two hydropower stations, the above hydropower station reservoir as the upper reservoir, the next level as the lower reservoir, according to the actual terrain to choose the appropriate intake, can be integrated "power generation + pumping" and "power generation + pumping power generation" two modes for development. This model is suitable for the transformation of cascade hydropower stations, and can greatly improve the adjustment capacity and adjustment time period of cascade hydropower stations, and the benefit is remarkable. FIG. 2 is the layout of hydropower station for cascade development of a river in China. The dam site of the upper hydropower station is basically less than 50 kilometers from the intake of the lower hydropower station.

In situ equilibrium

The "local balance" mode refers to the construction of wind power and photovoltaic power generation projects near the hydropower station, and the self-regulation balance combined with the operation of the hydropower station to achieve stable power output in accordance with the scheduling requirements. Considering that major hydropower units operate according to power system scheduling, this model can be applied to run-off power stations and some small hydropower plants that are not suitable for large-scale transformation and are usually not scheduled as conventional peak and frequency regulation functions. It can flexibly control the operation output of hydropower units, tap its short-term adjustment capacity, and achieve local balanced and stable power output. At the same time, improve the utilization of existing transmission line assets.

Water transfer and power peaking complex

The mode of "water transfer and power peaking complex" is based on the construction concept of water transfer pumped storage power station, combined with large-scale cross-basin water transfer and other major water conservancy projects, to build a number of reservoirs and water diversion facilities, and use the water head drop between reservoirs to build a number of pumping stations, conventional hydropower and pumped storage power stations to form a power generation and storage complex. In the process of transferring water from high-altitude water source to low-altitude area, the "water transfer and power peak balancing complex" can make full use of the head drop to obtain power generation income while realizing long-distance water transfer and reducing water transfer cost. At the same time, the "water transfer and power peaking complex" can be used as a large-scale dispatchable load and power supply of the power system to provide regulation services for the system. In addition, the complex can also be combined with seawater desalination projects, etc., to achieve comprehensive applications of water resources development and power system regulation.

Seawater pumped storage

The seawater pumped storage power station can choose a suitable location in the seaside to build the upper reservoir, and the sea as the lower reservoir. In the case that the site selection of conventional pumped storage power station is increasingly difficult, the relevant departments of the state have paid attention to the seawater pumped storage power station and carried out resource survey and prospective technology research and test. Seawater pumped storage can also be combined with tidal energy, wave energy, offshore wind power and other comprehensive development, the construction of large storage capacity and long regulation period of pumped storage power stations.

In addition to the runoff hydropower station and some small hydropower stations with no storage capacity, most of the hydropower stations with a certain reservoir capacity can be studied and carried out pumped storage function transformation. In new hydropower stations, pumped storage units of a certain capacity can be designed and arranged as a whole. Preliminary estimates, the application of the new development mode, can quickly add high-quality peak load capacity of at least 100 million kilowatts; The use of "water transfer and power peak balancing complex" and seawater pumped storage power generation can also bring extremely considerable high-quality peak balancing capacity, which is of great significance for the construction of new power systems and safe and stable operation, and has huge economic and social benefits.

Proposals for the innovative development of hydropower

First, organize the top-level design of hydropower innovation and development as soon as possible, and issue guidelines to support hydropower innovation and development on the basis of this work. Research has been carried out on major issues such as the guiding ideology, development positioning, basic principles, planning priorities and layout of hydropower innovation and development, and on this basis, development plans have been formulated, development stages and expectations have been clearly defined, and market players have been guided to carry out project development in an orderly manner.

The second is to organize the technical and economic feasibility analysis and demonstration and project demonstration. Combined with the construction of a new power system, organize the investigation of hydropower station resources and the technical and economic analysis of the project, propose the project construction plan, select typical engineering projects to carry out engineering demonstrations, and accumulate experience for large-scale development.

Third, we will support research on key technologies and conduct experimental demonstrations. Through the setting of national science and technology special projects, support the basic and universal technology research, development and demonstration application of key equipment in the field of innovation and development of hydropower generation, including but not limited to seawater pumping and storage pump turbine blade materials, large-scale regional water transfer and power peak balancing complex investigation and design.

Fourth, formulate fiscal taxation, project approval and electricity price policies to promote the innovative development of hydropower generation. Focusing on all aspects of the innovative development of hydropower generation, formulate policies such as financial discount interest, investment subsidies and tax incentives according to local conditions in the early stage of project development, and incorporate them into the scope of green finance support to reduce project financial costs; For pumped storage projects that do not fundamentally change the hydrological characteristics of rivers, simplified approval procedures will be implemented to reduce the period of administrative approval. We will rationalize the capacity pricing mechanism of pumped storage units and the pricing mechanism of pumped power generation to ensure reasonable value return.


  • Honeywell TK-IAH161 - 1PC ANALOG INPUT New Shipping DHL or FedEX
  • Honeywell PX45A - "8 Points/mm (203dpi), Rewind, LTS, Disp. (Color), RTC, Ethernet,"
  • Honeywell 51309276-150 - / 51309276150 (NEW NO BOX)
  • Honeywell 82408217-001 - / 82408217001 (NEW NO BOX)
  • Honeywell BK-G100 - Elster U160 Gas Meter DN100 #3485
  • Honeywell MIDAS-M - 1PC MMC-A2U20000 Detector (DHL or FedEx) #H254CC YD
  • Honeywell 621-9938R-RP - Serial Input/Output Module 22572 Vr 3.2 94V-0
  • Honeywell U2-1018S-PF - NEW flame detector DHL Fast delivery
  • Honeywell TK-PRR021 - 51309288-475 redundancy module
  • Honeywell 50129828-003 - Temperature Transmitter
  • Honeywell 3151080 - RING SET P/N (HONEYWELL) NS COND # 11344 (4)
  • Honeywell 4DP7APXPR311 - CIRCUIT BOARD
  • Honeywell MG-818 - Symbol Generator P/N 7011675-818
  • Honeywell TC-IAH161 - NEW PLC Module One year Warranty#XR
  • Honeywell 51304800-100 - 30731808-004 Regulator Card REV B
  • Honeywell MU-FOED02 - UCN EXTENDER PN:51197564-200 REV F
  • Honeywell MC-PAIL02 - 51304907-100 Specii Input/Output Module Rev E
  • Honeywell SPS5713 - 51199930-100 NSMP
  • Honeywell XS858A - Mode S Transponder 7517401-960 Removed Working
  • Honeywell SK-5208 - Fire Panel Maintenance Service 6MonWarri UPS Express SK5208 Zy
  • Honeywell 51403422-150 - NEW HDW COMM CTRL CONTROLLER
  • Honeywell IBI-AD - Yamatake- 82407390-001/ 82408215-001 PCB Card
  • Honeywell 51401635-150 - / 51401635150 (USED TESTED CLEANED)
  • Honeywell ANT67A - TCAS Antenna 071-01548-0100 w/ March 2024 Overhauled 8130
  • Honeywell TC-IAH161 - NEW PLC Module One year Warranty
  • Honeywell 620-3632C - CPU. . (UK And EU Buyers Read)
  • Honeywell PX45A - "12 Points/mm (300dpi), Rewind, LTS, Disp. (Color), RTC, Ethernet"
  • Honeywell K4LCN-4 - 51402755-100 Processor Card Rev: F 51305099-100 B
  • Honeywell 2001-400-150-126-200-20-100001-1-0-00 - REPAIRED PNEUMATIC ACTUATOR
  • Honeywell GGSI - 51401914-100 HDW B FW A R400 51400996-100 Rev C PLC Board Module
  • Honeywell 184637 - TRANSDUCER P/N (HONEYWELL) NS CONDITION #12517
  • Honeywell WEB-600E - Network Controller Via DHL or FedEx
  • Honeywell 620-0073C - / 6200073C (USED TESTED CLEANED)
  • Honeywell 05704-A-0144 - / 05704A0144 (NEW NO BOX)
  • Honeywell RI-406 - P/N 4026206-940 (Sperry) Instrument Remote Controller
  • Honeywell AAU-32/A - ALTIMETER ENCODER P/N 99251-3252011-0101 REP TAG # 12197
  • Honeywell T-1204-1174 - 51304907-100 Spcii I/O Module
  • Honeywell TK-PRS021 - Control Processor Expedited Shipping TKPRS021 Spot Goods Zy
  • Honeywell VITO - Enraf Lt Interface 762 Up 762 Aga / Z
  • Honeywell QPP-0001 - FC-QPP-0001 Module
  • Honeywell TC-PRS021 - / TCPRS021 (USED TESTED CLEANED)
  • Honeywell 51403698-100 - / 51403698100 (USED TESTED CLEANED)
  • Honeywell XCL8010A - 24V NSMP
  • Honeywell 91884 - "Target, 15.620 X 12.846 X 0.250"" BTL, 07-613, 5N TI, 118305"
  • Honeywell 51403776-100 - / 51403776100 (USED TESTED CLEANED)
  • Honeywell LG1093AC01 - UV Flame Sensor/Detector
  • Honeywell CC-PCNT02 - Controller Module Expedited Shipping CCPCNT02 Spot Goods Zy
  • Honeywell FFSB14ER10KS2 - / FFSB14ER10KS2 (NEW IN BOX)
  • Honeywell RF600 - Radio Frequency Unit 7516240-60060 Removed Working
  • Honeywell 51196881-100 - NEW UPGRADE KIT EC W/ODEP 51196881100
  • Honeywell CC-IP0101 - 51410056-175 Brand New Expedited Shipping
  • Honeywell AL300 - Alt Preselect Command Controller 7002412-904 w/ August 2011 Repaired 8130
  • Honeywell 094377-00 - / 09437700 (USED TESTED CLEANED)
  • Honeywell IRTP271 - Tata Printed Circuit Board Rev.0 DPCB21010003
  • Honeywell TVMUGR-888880-020-52-3-030-0U000G-000 - MULTITREND GR GRAPHIC RECORDER
  • Honeywell RM850 - Radio Management Unit 7012100-811 w/ December 2017 Repaired 8130
  • Honeywell PGM-7360 - Gas Detector
  • Honeywell WU660 - Radar RTA 7021450-601 w/ April 2024 Overhauled 8130
  • Honeywell 9243201 - / 9243201 (NEW NO BOX)
  • Honeywell AZ850 - Micro Air Data Computer 7014700-601 Removed Working
  • Honeywell DCP550 - Yamatake- Digital Programmable Controller Temperature
  • Honeywell FF-SEDGE6G2-1M-C - / FFSEDGE6G21MC (USED TESTED CLEANED)
  • Honeywell FC-RUSIO-3224 - Brand New Expedited Shipping Via DHL
  • Honeywell RM850 - Radio Management Unit 7012100-801 w/ March 2021 Tested 8130
  • Honeywell HIMA-6E-B - Large System Controller Via DHL or FedEx
  • Honeywell RM855 - Radio Management Unit 7013270-973 w/ April 2024 Modified 8130
  • Honeywell MP-DNCF02-200 - REV B Upper & Lower / 51305072-300 51305072-200 REV L.
  • Honeywell 80360206-001 - / 80360206001 (USED TESTED CLEANED)
  • Honeywell DE132-0-A-BB-0-Z-1-0C-EE0-00 - Chart Recorder
  • Honeywell 51403519-160 - NSNP
  • Honeywell 627-1002RC - / 6271002RC (USED TESTED CLEANED)
  • Honeywell 51400997-100 - / 51400997100 (USED TESTED CLEANED)
  • Honeywell J-AOM10 - Yamatake- /J-A0M10 Analog Output Module 24Vdc 480Ma Hw/Fw Rev: C
  • Honeywell AZ800 - Digital Air Data Computer 7000700-953 w/ July 2016 Repaired EASA Form 1
  • Honeywell FC-RUSIO-3224 - Brand New
  • Honeywell BZ-2RW82272-A2 - Micro Switch 1a 125vac
  • Honeywell FC-RUSIO-3224 - 1PC Brand New
  • Honeywell 10268S-1-020-201-0-2-03100-000-00 - Electric Actuator 121va 120v-ac
  • Honeywell 14CE102-1RS - Limit Switch IP65
  • Honeywell FC-PSU-UNI2450U - Brand New Fast Shipping FedEx or DHL
  • Honeywell 696658-1 - SUPPORT ASSY. NS 11764 (3)
  • Honeywell TK-PRR021 - ONE New 51309288-475 DC
  • Honeywell PSU-UNI2450 - (AS PICTURED) NUPI
  • Honeywell 80360146-011 - / 80360146011 (USED TESTED CLEANED)
  • Honeywell EGWPM - MODULE Assembly 7028419-1904 Inspected/Tested Jun. 2021
  • Honeywell DE131-0-A-0B-0-Z-1-0B,0C-EE0-000 - "Chart Recorder"
  • Honeywell 51454493-126 - / 51454493126 (NEW IN BOX)
  • Honeywell 965-1186-003 - "MK VI, GPWS Computer, EASA FORM ONE/FAA 8130 Guaranteed"
  • Honeywell 51401996-100 - / 51401996100 (USED TESTED CLEANED)
  • Honeywell TSENALMOX-08287 - "Target, 1.900 X 12.733 X 15.620"", 037-173-53, 118222"
  • Honeywell SPS5785 - 1pc 51198651-100 Power Supply Brand New Fast shipping
  • Honeywell FX-USI-0002 Security Manager System Module 5Vdc
  • Honeywell SPS5785 - 51198651-100 power supply
  • Honeywell HIMA-6E-B - Large System Controller Fast Shipping
  • Honeywell 51301882-100 - RTD MUX Terminal Board
  • Honeywell 51198821-100 - 1PC new module PLC One year warranty free Shipping#XR
  • Honeywell EAMR - 51401996-100 E CARD card
  • Honeywell 51305734-100 - / 51305734100 (USED TESTED CLEANED)
  • Honeywell 50065674 - Basic Display PWA Assembly HNWG50049911-001
  • Honeywell TSENCOBTM-07889 - "15.620X12.913X0.125 MPS-5-002/M TARGET, 109953"
  • Honeywell 86220000 - / 086220000 (USED TESTED CLEANED)
  • Honeywell CC-IP0101 - C300 system card Brand new fedex or DHL
  • Honeywell WU880 - Radar Antenna 7021450-801 w/ May 2024 Repaired 8130
  • Honeywell CC-IP0101 - ONE Profibus DP Gateway Module NEW
  • Honeywell 397124-2-4 - Gulfstream Valve New Overhauled
  • Honeywell PGM-7340 - RAE 3000 VOC Detector Shipping DHL or FedEX
  • Honeywell RCZ850 - Integrated Communication Unit 7510100-731 w/ March 2024 Tested 8130
  • Honeywell STS103-001-00006-12-1137 - NSNP
  • Honeywell AL300 - Altitude Preselect Command Ctlr 7002412-906 w/ March 2024 Overhauled 8130
  • Honeywell 2119020-8000 - Series 1 N1 Digital Electronic Engine Control
  • Honeywell 51198685-100 - Power Module Brand New Shipping FedEx or DHL
  • Honeywell 620-0073C - / 6200073C (NEW IN BOX)
  • Honeywell GTS-3PA-B - "Timer 0-60 Sec, 220v 50/60 Hz"
  • Honeywell IVA81D - TCAS Vertical Speed Indicator 066-01171-2804 w/ January 2020 Tested 8130
  • Honeywell 51403299-200 - / 51403299200 (NEW NO BOX)
  • Honeywell TSENALMOX-08287 - "Target, 1.900 X 12.733 X 15.620"", 037-173-53, 118221"
  • Honeywell AT860 - Loop Sense Antenna 7510300-901 w/ May 2024 Tested 8130
  • Honeywell XL2000B3A - 1PCS USED /
  • Honeywell CC-PCNT02 - C300 Controller Module
  • Honeywell ASDX015D44R - SenSym Pressure Sensor Micro Switch 0-15 psi 8 pin DIP
  • Honeywell 900CS15-00 - Touch Panel NEW SHIP DHL OR EMS 1 Year Warranty cl
  • Honeywell FC-SCNT01 - S300 Control Module 51454926-176 Security Control - 400mA
  • Honeywell DC1010CR-301000-E - Digital Temperature Controller 85-265VAC
  • Honeywell TK-PRR021 - redundancy module 51309288-475
  • Honeywell K4LCN - 51402755-100 Motherboard SS 51201795-400
  • Honeywell XL2000B3A - plc new FREE EXPEDITED SHIPPING
  • Honeywell FC-SCNT02 - 51460114-176 S300 Controller Module 78-4
  • Honeywell BVS - 99ATEX2259X 03ATEXG016X Tester new