Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Power generation + pumped power generation

来源: | 作者:佚名 | 发布时间 :2023-12-06 | 378 次浏览: | Share:

The boundary conditions of hydropower planning, design and operation have changed significantly. The core task of traditional hydropower station planning and design is to select the technically feasible and economically reasonable scale and operation mode of the power station, which is usually considered under the premise of the optimal objective of comprehensive utilization of water resources. It is necessary to comprehensively consider the requirements of flood control, irrigation, shipping and water supply, and carry out comprehensive economic, social and environmental benefit comparison and selection. Under the background of continuous technological breakthroughs and the continuous increase of the proportion of wind power and photovoltaic, the power system objectively needs to make full use of hydraulic resources, enrich the operation mode of hydropower stations, and play greater adjustment functions such as peak regulation, frequency regulation and phase regulation, and many previously unfeasible goals in technology, equipment and construction have become economically and technologically feasible. The original unidirectional model of water-storage and water-release power generation can no longer meet the requirements of the new power system, so it is necessary to combine the model of pumped storage power station to greatly improve the regulating capacity of hydropower station. At the same time, in view of the limitations of short time scale regulation power sources such as pumped storage power stations in promoting the consumption of new energy sources such as wind power and photovoltaic power generation, and it is difficult to undertake the task of safe supply, it is objectively necessary to increase the storage capacity of reservoirs to improve the regulation time cycle of conventional hydropower, so as to make up for the gap in system regulation capacity caused by the withdrawal of coal power.

Demand for innovative development

It is urgent to accelerate the development of hydropower resources, increase the proportion of hydropower in the new power system, and play a greater role. In the context of the "double carbon" goal, the total installed capacity of wind power and photovoltaic power generation will reach more than 1.2 billion kilowatts in 2030; It is expected to reach 5 billion to 6 billion kilowatts by 2060. In the future, the new power system has a huge demand for regulating resources, and hydropower is the best regulating power source. China's hydropower technology can be developed installed capacity of 687 million kilowatts, by the end of 2021, has developed 391 million kilowatts, the development rate of about 57%, far lower than the 90% development rate of some developed countries in Europe and the United States. Considering the long development cycle of hydropower projects (usually 5 to 10 years), while the development cycle of wind power and photovoltaic power generation projects is relatively short (usually 0.5 to 1 year, or even shorter) and the rapid development, it is urgent to speed up the development progress of hydropower projects, build as soon as possible and play a role as soon as possible.

It is urgent to change the development mode of hydropower generation to meet the new requirements of new power system peak regulation. Under the constraint of "dual carbon" target, the future power supply structure determines the huge requirements brought by the operation of the power system for peak load balancing, and this is not a problem that can be solved by the scheduling combination and market forces, but a basic technical feasibility problem. Only on the premise of technical feasibility, through market guidance, scheduling and operation control, the economic security and stable operation of the power system can be realized. For the traditional hydropower station in operation, it is urgent to systematically optimize the utilization of existing storage capacity and facilities, appropriately increase the renovation investment when necessary, and do everything possible to improve the regulation capacity. For the newly planned and constructed conventional hydropower stations, it is urgent to consider the major boundary condition changes brought about by the new power system, and plan and build flexible and adjustable hydropower stations with long and short time scales according to local conditions. As for pumped storage power, the construction should be accelerated under the condition that the adjustment capacity of short time scale is seriously insufficient. In the long run, we should consider the demand of the system for short time scale peak load capacity, and formulate its development plan scientifically. For the water-transfer pumped storage power station, it should be combined with the cross-regional water transfer needs of national water resources, not only as a cross-basin water transfer project, but also as a power system regulation resource for comprehensive utilization, and if necessary, it can also be combined with seawater desalination project overall planning and design.

It is urgent to promote hydropower generation to create greater economic and social value while ensuring the safe operation of the new power system. Based on the constraints of the development goal of carbon peaking and carbon neutrality in the power system, new energy sources will gradually become the main force in the power supply structure of the power system in the future, and the proportion of high-carbon power sources such as coal power will gradually decrease. According to data from a number of research institutions, under the scenario of large-scale withdrawal of coal power, by 2060, China's wind power and photovoltaic power generation capacity will account for about 70%; The total installed hydropower capacity considering pumped storage is about 800 million kilowatts, accounting for about 10%. In the future power supply structure, hydropower is a relatively reliable and flexible and adjustable power supply, which is the cornerstone power supply to ensure the safe, stable and economic operation of the new power system, and it is urgent to change from the current "power generation is mainly and regulation is auxiliary" to the development and operation mode of "regulation is mainly and power generation is auxiliary". Accordingly, the economic benefits of hydropower enterprises should get due benefits under the background of greater value, and the income of hydropower enterprises should also increase significantly the income of providing adjustment services for the system on the basis of the original power generation income.

  • FOXBORO P0926KK PLC system functional module
  • FOXBORO P0924AW wireless pressure transmitter
  • FOXBORO P0916NK differential pressure transmission cable
  • FOXBORO P0916JQ PLC module
  • FOXBORO P0916JP I/A series control module
  • FOXBORO P0916GG Digital Input Module
  • FOXBORO P0916DV I/A series digital input module
  • FOXBORO P0916DC Terminal Cable
  • FOXBORO P0916DB I/A series PLC module
  • FOXBORO P0914ZM recognition module
  • FOXBORO P0902YU control module
  • FOXBORO P0901XT Process Control Unit
  • FOXBORO P0800DV fieldbus extension cable
  • FOXBORO P0800DG Standard Communication Protocol Module
  • FOXBORO P0800DB Universal I/O Module
  • FOXBORO P0800DA Industrial Control Module
  • FOXBORO P0800CE control module
  • FOXBORO P0700TT Embedded System
  • FOXBORO P0500WX Control System Module
  • FOXBORO P0500RY Terminal Cable Assembly
  • FOXBORO P0500RU control module
  • FOXBORO P0500RG Terminal Cable
  • FOXBORO P0400ZG Node Bus NBI Interface Module
  • FOXBORO P0400GH fieldbus power module
  • FOXBORO FBM207B Voltage Monitoring/Contact Induction Input Module
  • FOXBORO FBM205 Input/Output Interface Module
  • FOXBORO FBM18 Industrial Controller Module
  • FOXBORO FBM12 Input/Output Module
  • FOXBORO FBM10 Modular Control System
  • FOXBORO FBM07 Analog/Digital Interface Module
  • FOXBORO FBM05 redundant analog input module
  • FOXBORO FBM02 thermocouple/MV input module
  • FOXBORO FBI10E fieldbus isolator
  • FOXBORO DNBT P0971WV Dual Node Bus Module
  • FOXBORO CP30 Control Processor
  • FOXBORO CM902WX Communication Processor
  • FOXBORO AD202MW Analog Output Module
  • FOXBORO 14A-FR Configuration and Process Integration Module
  • FOXOBORO 130K-N4-LLPF Controller
  • FUJI FVR004G5B-2 Variable Frequency Drive
  • FUJI FVR008E7S-2 High Efficiency Industrial Inverter
  • FUJI FVR008E7S-2UX AC driver module
  • FUJI RPXD2150-1T Voltage Regulator
  • FUJI NP1PU-048E Programmable Logic Control Module
  • FUJI NP1S-22 power module
  • FUJI NP1AYH4I-MR PLC module/rack
  • FUJI NP1BS-06/08 Programmable Controller
  • FUJI NP1X3206-A Digital Input Module
  • FUJI NP1Y16R-08 Digital Output Module
  • FUJI NP1Y32T09P1 high-speed output module
  • FUJI NP1BS-08 Base Plate​
  • FUJI A50L-2001-0232 power module
  • FUJI A50L-001-0266 # N Programmable Logic Control Module
  • GE GALIL DMC9940 Advanced Motion Controller
  • GE DMC-9940 Industrial Motion Control Card
  • GE IS200AEADH4A 109W3660P001 Input Terminal Board
  • GE IC660HHM501 Portable Genius I/O Diagnostic Display
  • GE VMIVME 4140-000 Analog Output Board
  • GE VMIVME 2540-300 Intelligent Counter
  • GE F650NFLF2G5HIP6E repeater
  • GE QPJ-SBR-201 Circuit Breaker Module
  • GE IC200CHS022E Compact I/O Carrier Module
  • GE IC695PSD140A Input Power Module
  • GE IC695CHS016-CA Backboard
  • GE IC800SS1228R02-CE Motor Controller
  • GE IS215WEMAH1A Input/Output Communication Terminal Board
  • GE CK12BE300 24-28V AC/DC Contactor
  • GE CK11CE300 contactor
  • GE DS3800NB1F1B1A Control Module
  • GE VMIVME2540 Intelligent Counter
  • GE 369B1859G0022 High Performance Turbine Control Module
  • GE VME7865RC V7865-23003 350-930007865-230003 M AC contactor
  • GE SR489-P5-H1-A20 Protection Relay
  • GE IS200AEPGG1AAA Drive Control Module
  • GE IS215UCCCM04A Compact PCI Controller Board
  • GE VME7768-320000 Single Board Computer
  • GE SR489-P5-LO-A1 Generator Protection Relay
  • GE IS215WETAH1BB IS200WETAH1AGC Input/Output Interface Module
  • GE D20 EME210BASE-T Ethernet Module
  • GE IS200EXHSG3REC high-speed synchronous input module
  • GE IS200ECTBG1ADE exciter contact terminal board
  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module
  • GE IS410STCIS2A IS400STCIS2AFF Industrial Control Module
  • GE DS200DCFBG2BNC DS200DCFBG1BNC DC Feedback Board
  • GE VME5565 VMIVME-5565-11000 332-015565-110000 P Reflective Memory
  • GE VMIVME-7807 VMIVMME-01787-414001 350-00010078007-414001 D module
  • GE IS220PDOAH1A 336A4940CSP2 Discrete Output Module
  • GE VMIVME-4150 Analog Output Module
  • GE WESDAC D20 PS Industrial Power Module
  • GE 369B1860G0031 servo drive module
  • GE 369B1859G0021 Input/Output Module
  • GE 208D9845P0008 Motor Management Relay
  • GE IS420UCSCH1A-F.V0.1-A Independent Turbine Controller
  • GE D20EME10BASE-T 820-0474 Ethernet Interface Module
  • GE DS200DCFBG2BNC MRP445970 DC Feedback Board
  • GE IC800SSI228RD2-EE servo motor controller
  • GE IS200JPDMG1ACC S1AT005 Digital Input/Output (I/O) Module
  • GE IS200TSVCH1AED servo input/output terminal board
  • GE IS200TTURH1CCC S1DF00Z Terminal Turbine Plate
  • GE IS200TSVCH1ADC S1CX01H servo input-output board
  • GE IS200TRPGH1BDD S1C5029 Trip Solenoid Valve Control Board
  • GE IS220YAICS1A L Analog Input/Output Module
  • GE UCSC H1 IS420UCSCH1A-F-VO.1-A Controller Module
  • GE UCSC H1 IS420UCSCH1A-B Communication Processing Module
  • GE IC697VDD100 Digital Input Module
  • GE V7768-320000 3509301007768-320000A0 Controller Module
  • GE IS410TRLYS1B Relay Output Module
  • GE IS415UCVGH1A V7666-111000 VME Control Card
  • GE IC800SSI216RD2-CE servo motor controller
  • GE VMIVME-5565-010000 332-01565-010000P Reflective Memory
  • GE IC695ALG508-AA Analog Input Module
  • GE IC660EPM100J Power Monitoring and Control Module
  • GE RS-FS-9001 362A1052P004 Redundant Fan System Module
  • GE IS220UCSAH1AK independent processor module
  • GE 369-HI-0-M-0-0-0-E Motor Management Relay
  • GE CIFX50-C0 interface board
  • GE SR469-P5-H-A20-T Motor Management Relay
  • GE WES5120 2340-21005 power module
  • GE WES5120 2340-21003 Control Module
  • GE D20MIC10BASE-T 820-0756 Ethernet Module
  • GE WES13-3 5167-001-0210 Mechanical Relay Output Module
  • GE WES13-3 2508-21001 Control Board Module
  • GE D20ME 526-2005-216943 Input/Output Module