Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:
  • ABB NTHS03 Hydraulic Servo Termination Unit
    ❤ Add to collection
  • ABB NTHS03 Hydraulic Servo Termination Unit

    110V-380V
    1A-30A
    5W-130W
    1 year
    30
    United States, France, Japan, Viet Nam, Australia, Russia, Germany, Italy, Arabia
    NTHS03 Hydraulic Servo Termination Unit
    • ¥7105.00
      ¥11415.00
      ¥7105.00
      ¥7105.00
    • Satisfaction:

      Sales: 0

      Review: 0

    Weight:2.000KG
    • Quantity:
    • (Inventory: 2)
Description
NTHS03 Hydraulic Servo Termination Unit

ABB NTHS03 Hydraulic Servo Termination Unit

Basic Information

Model and name: ABB NTHS03 Hydraulic Servo Termination Unit, ‘NTHS03’ is the model number of the product, this is a hydraulic servo terminal unit, in the hydraulic servo system plays a key role in the control and connection.

Belongs to the series: belongs to the ABB industrial automation control equipment series, in this series there are other types of terminal units, controllers, drives and other equipment, which cooperate with each other to form a complete industrial automation control system, especially in the system involving hydraulic servo control plays an important role.

Application Scenario Related: It is mainly used in industrial fields that require high-precision hydraulic control, such as steel rolling equipment in the metallurgical industry, injection moulding equipment in the plastic injection moulding machine industry, and hydraulic excavators in construction machinery. In these scenarios, the hydraulic servo system is used to accurately control the position, speed or force of the actuator, and the NTHS03 terminal unit serves as a key part of the control link to achieve effective management of the hydraulic servo system.

Functional Features

Hydraulic servo control functions

Precise position control: The actuator in the hydraulic servo system can be precisely controlled in position. By receiving the position command signal from the controller and comparing it with the actual position feedback signal, the hydraulic flow and pressure are precisely adjusted using advanced control algorithms (e.g., proportional-integral-derivative, PID control) to achieve high-precision positioning of the actuator (e.g., the piston of a hydraulic cylinder). For example, during the mould closing process of an injection moulding machine, precise control of the template position ensures that the mould is closed with millimetre or even micrometre accuracy to ensure the quality of the product being moulded.

Speed control capability: In addition to position control, the speed of the actuator can also be effectively controlled. According to the demand of the system, adjust the flow of the hydraulic servo system, so that the actuator moves according to the set speed. In steel rolling equipment, control the rolling speed of the rolls so that they can be dynamically adjusted according to the thickness of the steel, material and other factors to ensure the stability of the rolling process and the consistency of product quality.

Force control function (possible): in some application scenarios, the terminal unit may have a force control function. It can adjust the pressure of the hydraulic system according to the force signal fed back from the sensor, so as to achieve precise control of the output force of the actuator. For example, in some equipment that requires precise control of the clamping force, such as fixtures in machining, the unit controls the hydraulic system to apply accurate clamping force to avoid damage to the workpiece due to excessive clamping force or loosening of the workpiece due to too little clamping force.

Signal processing and feedback functions

Signal conversion and conditioning: It can convert and condition the input control signals (e.g. digital or analogue signals from the controller of the upper computer) to make them meet the driving requirements of the hydraulic servo system. At the same time, the sensor feedback signals in the hydraulic system (such as position sensors, pressure sensors, flow sensors feedback signals) for amplification, filtering and other processing to improve the quality and reliability of the signal. For example, the weak analogue voltage signal from the controller is converted into a current signal suitable for hydraulic proportional valve drive, and the position sensor feedback signal with noise filtering, to get more accurate position information.

Feedback closed-loop control: build a feedback closed-loop control system, the actual position, speed or force of the actuator and other information real-time feedback to the control unit. By comparing the feedback signal with the input target signal, the output of the hydraulic servo system is continuously adjusted to reduce the error and achieve precise control. This closed-loop control mechanism enables the system to automatically compensate for the effects of external disturbances (e.g. load changes, oil temperature changes, etc.) on the control performance, ensuring system stability and accuracy.

Communication function

Internal communication support: communicate with other modules within the system (e.g. hydraulic pump controller, sensor interface module, other terminal units, etc.) to achieve data sharing and cooperative work. For example, communicating with the hydraulic pump controller to obtain the working status information of the hydraulic pump, and at the same time sending hydraulic servo control commands to the hydraulic pump controller to adjust the output flow and pressure of the hydraulic pump to meet the system requirements.

External Communication Capability: Equipped with external communication interface, it can communicate with the upper computer system (such as industrial control computer, PLC - Programmable Logic Controller, SCADA system - Supervisory Control and Data Acquisition System). Through external communication, it receives control commands (e.g. set position, speed, force and other target parameters) sent by the host computer and uploads hydraulic servo system operation status data (e.g. actual position, speed, pressure, fault information, etc.) to the host computer. Supports a variety of communication protocols, such as Ethernet, Profibus, Modbus, etc., to adapt to different industrial communication environments.

Diagnosis and protection function

Self-diagnostic function: It can diagnose its own hardware (such as circuit boards, interface circuits, etc.) and software (such as control programme, communication programme, etc.). When detecting its own faults (such as circuit short circuit, program abnormality, etc.), it can send out an alarm signal in time, and can send the fault information to the host computer system or other monitoring equipment through the communication interface. For example, when it detects that the temperature of the internal circuit is too high or the communication interface communication error, it will automatically issue a fault alarm to remind the maintenance personnel to carry out maintenance.

System protection function: Provides protection measures for the hydraulic servo system. It can monitor whether the key parameters of the hydraulic system (such as pressure, temperature, flow, etc.) are out of the normal range, and take timely protective measures, such as cutting off the power supply of the hydraulic system and closing the hydraulic valves, to prevent damage to the system when there are abnormalities (such as high pressure that may lead to rupture of the pipeline or high temperature that affects the performance of the hydraulic oil, etc.). At the same time, you can also limit the range of motion of the actuator to avoid damage to the equipment due to over-travel.

Basic Information

Model and name: ABB NTHS03 Hydraulic Servo Termination Unit, ‘NTHS03’ is the model number of the product, this is a hydraulic servo terminal unit, in the hydraulic servo system plays a key role in the control and connection.

Belongs to the series: belongs to the ABB industrial automation control equipment series, in this series there are other types of terminal units, controllers, drives and other equipment, which cooperate with each other to form a complete industrial automation control system, especially in the system involving hydraulic servo control plays an important role.

Application Scenario Related: It is mainly used in industrial fields that require high-precision hydraulic control, such as steel rolling equipment in the metallurgical industry, injection moulding equipment in the plastic injection moulding machine industry, and hydraulic excavators in construction machinery. In these scenarios, the hydraulic servo system is used to accurately control the position, speed or force of the actuator, and the NTHS03 terminal unit serves as a key part of the control link to achieve effective management of the hydraulic servo system.

Functional Features

Hydraulic servo control functions

Precise position control: The actuator in the hydraulic servo system can be precisely controlled in position. By receiving the position command signal from the controller and comparing it with the actual position feedback signal, the hydraulic flow and pressure are precisely adjusted using advanced control algorithms (e.g., proportional-integral-derivative, PID control) to achieve high-precision positioning of the actuator (e.g., the piston of a hydraulic cylinder). For example, during the mould closing process of an injection moulding machine, precise control of the template position ensures that the mould is closed with millimetre or even micrometre accuracy to ensure the quality of the product being moulded.

Speed control capability: In addition to position control, the speed of the actuator can also be effectively controlled. According to the demand of the system, adjust the flow of the hydraulic servo system, so that the actuator moves according to the set speed. In steel rolling equipment, control the rolling speed of the rolls so that they can be dynamically adjusted according to the thickness of the steel, material and other factors to ensure the stability of the rolling process and the consistency of product quality.

Force control function (possible): in some application scenarios, the terminal unit may have a force control function. It can adjust the pressure of the hydraulic system according to the force signal fed back from the sensor, so as to achieve precise control of the output force of the actuator. For example, in some equipment that requires precise control of the clamping force, such as fixtures in machining, the unit controls the hydraulic system to apply accurate clamping force to avoid damage to the workpiece due to excessive clamping force or loosening of the workpiece due to too little clamping force.

Signal processing and feedback functions

Signal conversion and conditioning: It can convert and condition the input control signals (e.g. digital or analogue signals from the controller of the upper computer) to make them meet the driving requirements of the hydraulic servo system. At the same time, the sensor feedback signals in the hydraulic system (such as position sensors, pressure sensors, flow sensors feedback signals) for amplification, filtering and other processing to improve the quality and reliability of the signal. For example, the weak analogue voltage signal from the controller is converted into a current signal suitable for hydraulic proportional valve drive, and the position sensor feedback signal with noise filtering, to get more accurate position information.

Feedback closed-loop control: build a feedback closed-loop control system, the actual position, speed or force of the actuator and other information real-time feedback to the control unit. By comparing the feedback signal with the input target signal, the output of the hydraulic servo system is continuously adjusted to reduce the error and achieve precise control. This closed-loop control mechanism enables the system to automatically compensate for the effects of external disturbances (e.g. load changes, oil temperature changes, etc.) on the control performance, ensuring system stability and accuracy.

Communication function

Internal communication support: communicate with other modules within the system (e.g. hydraulic pump controller, sensor interface module, other terminal units, etc.) to achieve data sharing and cooperative work. For example, communicating with the hydraulic pump controller to obtain the working status information of the hydraulic pump, and at the same time sending hydraulic servo control commands to the hydraulic pump controller to adjust the output flow and pressure of the hydraulic pump to meet the system requirements.

External Communication Capability: Equipped with external communication interface, it can communicate with the upper computer system (such as industrial control computer, PLC - Programmable Logic Controller, SCADA system - Supervisory Control and Data Acquisition System). Through external communication, it receives control commands (e.g. set position, speed, force and other target parameters) sent by the host computer and uploads hydraulic servo system operation status data (e.g. actual position, speed, pressure, fault information, etc.) to the host computer. Supports a variety of communication protocols, such as Ethernet, Profibus, Modbus, etc., to adapt to different industrial communication environments.

  • User name Member Level Quantity Specification Purchase Date
  • Satisfaction :
No evaluation information
  • ABB VA-MC15-05 Controller Module
  • ABB VA-3180-10 Variable Speed Drive
  • ABB 72395-4-039123 excitation system power module
  • ALSTOM NRD108031 TRVC070999000 BOTTOM high-speed counting module
  • ALSTOM CMU 42015-115-00 Control Module
  • GE P40 Agile Series Intelligent Electronic Devices (IEDs)
  • ABB EasyLine series gas analyzer EL3020, EL3040
  • ABB 83SR04 module
  • ABB 216EA61b High Performance Industrial Control Module
  • ABB MB510 Program Card Interface
  • ABB LDGRB-01 3BSE013177R1 Stand-alone resolution module
  • ABB ACH550-01 frequency converter
  • ABB DTDX991A 61430001-UW servo controller
  • ABB 300 series NEMA rated full voltage controller
  • ABB DTCC901B High Performance Digital Temperature Controller
  • ABB 5SHX14H4502 Controller
  • ABB 3BSE013064R1 PU516 Engineering Board -PCI
  • ABB 5SHX10H6004 Control Signal Processing Module
  • ABB PPE091A101 medium voltage frequency converter
  • ABB CONTROL UNIT SYN 5201A-Z,V277 3BHB006714R0277
  • ABB 3BSE017235R1 PXAH 401 Operator unit
  • ABB Plantguard Safety Instrumented System
  • ABB AC 800M 6.0 Controller Hardware
  • ABB Panel 800 Version 6 Series Operator Panel
  • ABB System proS series enclosed starter
  • ABB Tmax T7 series molded case circuit breaker
  • ABB UK 500 series household distribution box
  • ABB contactors and overload relays
  • ABB NTAC-0x pulse encoder interface module
  • ABB electronic timer CT-APS.22
  • ABB Small, compact Thermostat KTO 011 / KTS 011
  • ABB medium voltage frequency converter ACS2000 4kV frame 1, 2, 3 spare parts
  • ABB low-voltage AF contactor AF400... AF460
  • ABB KPM Sheet Break Detector - KB2
  • ABB TP854 base plate
  • ABB AO845A Analog Output Module
  • ABB FS450R12KE3+AGDR-71C Integrated Circuit
  • ABB PNI800K01 Ability ™ Symphony ® Plus Hardware Selector
  • ABB REA 101 arc protection relay
  • ABB 3BSC950193R1 TB850 CEX-Bus Terminator
  • ABB BC810K02 Compact Product Kit Hardware
  • ABB 3BSC750262R1 (TK851V010) connection cable
  • ABB DI810 digital input module
  • ABB Harmony Sequence of Events (SOE) system
  • ABB Tension Electronics PFEA111/112
  • ABB AI801 Analog Input Module
  • ABB AF C094 AE02 ARCnet Control Board
  • ABB TP830-1 PLC module
  • ​ABB CP430 Human Machine Interface (HMI) Installation and Operation
  • ABB 81EU01-E/R3210 Analog Signal Input Module
  • ABB Panel 800- PP836 5.1 Hardware and Installation
  • ABB PM866AK01 Controller
  • ABB TK850V007 CEX Bus expansion cable Installation and configuration method
  • ABB AO801 Analog Output Module
  • ABB CI855 communication interface
  • ABB REF615R feeder protection and control
  • ABB EL3020 Model EasyLine Continuous Gas Analyzers
  • MOLEX SST-PB3-VME-1 and SST-PB3-VME-2 Hardware Reference Guide
  • Eaton XVH300 MICRO PANEL
  • Eaton XV-303/XV-313 multi touch display
  • ABB PP877 3BSE069272R2 Operator Panel
  • ABB 1SVR011718R2500 Analog Signal Converter
  • ABB BC810K02 CEX Bus Interconnection Unit Kit
  • ABB RELION ® 615 series REU615 voltage protection and control relay
  • ABB Symphony Harmony/INFI 90 DCS Remote I/O Module Upgrade Kit
  • ABB REM610C55HCNN02 motor protection relay
  • ABB TU810V1 Compact Terminal Unit
  • ABB REF 541, REF 543, and REF 545 feeder terminals
  • ABB UNITOL 1000 series automatic voltage regulator
  • ABB PCD235C101 3BHE057901R0101 AC800pec Excitation High Performance Control System
  • ABB GFD233 3BHE022294R0102 Redundant System Control Module
  • Galil DMC-40x0 series motion controller
  • ABB AO2040-CU Ex Central Unit
  • ABB REF615 feeder protection relay
  • ABB INSUMMCU2 MCU2A02V24 motor control unit
  • ABB REF 542plus multifunctional protection and switchgear control unit
  • ABB PP886 Compact Product Suite hardware selector
  • ABB AC500 V3 PLC Enhanced connectivity and performance
  • ABB SYNCHROTACT ® 5 Synchronous and Parallel Devices
  • ABB SUE 3000 high-speed switching device
  • ABB REF542plus multifunctional protection and switchgear control unit
  • ABB Relion ® 615 series REF615 feeder protection and control device
  • Bentley 3500/45 Position Monitor
  • Bentley 3500/42 Proximitors ®/ Earthquake monitoring module
  • ABB molded case circuit breaker
  • ABB MVME162 Embedded Controller
  • ABB TU810V1 System 800xA hardware selector
  • ABB SPAJ 140 C overcurrent and ground fault relay
  • ABB AC 800PEC High Performance Control System
  • ABB REF601 and REJ601 relays
  • ALSTOM RPH3/PS125b Controlled Switching Device,CT1VT220/TCR
  • ABB V-Contact VSC Medium voltage vacuum contactors
  • ABB 3BHE004385R0001 UNS 0884a, V1:Current Sensor 2000A
  • ABB Symphony Plus system IOR810 S800 I/O gateway
  • ABB Universal Performance Motor
  • ABB Electromagnetic Flowmeters ProcessMaster FEP300/FEP500 and HygienicMaster FEH300/FEH500
  • ABB Symphony Plus System SD Series PROFINET Interface Module PDP800
  • ABB 83SR04-E/R1210 control module
  • ABB UAD206A101 Programmable Logic Controller
  • ABB ACS800-04/U4 driver module
  • ABB UAD149A0011 3BHE014135R0011 Controller Module
  • ABB BSM series AC servo motor
  • ALSTOM DFI-150-0003- Limelight Diagnostic Board
  • ABB GCC960C102 motor driver
  • ABB INDUSTRIALDRIVES UCU-22, UCU-23 andUCU-24control units
  • ABB XDD501A101 Bus Terminal Module
  • ABB S800 I/O DTM 5.3 module
  • ALSTOM N897164611M High Performance Control Module
  • ALSTOM N897164610L Pulse Output Module
  • ALSTOM N70032702L High Performance Control Module
  • ALSTOM MVAJ1L1GB0771B Auxiliary Transmission Relay
  • GE 239 MOTOR PROTECTION RELAY
  • ALSTOM ADVANCED MICRO CONTROLLER 2
  • Honeywell HC900 Process and Safety Controller
  • ABB ControlMaster CM10 Universal Process Controller
  • ABB dual power conversion switch
  • ABB RET 541/543/545 Transformer Terminal Device
  • ABB Relion ® RET620 Transformer Protection and Control Device
  • ABB Relion ® REU615 Voltage Protection and Control Device
  • ABB Relion ® REU615 Voltage Protection and Control Device
  • ABB REX615 Protection and Control Relay Products
  • ABB PGC2000 series E2 process gas chromatograph
  • ABB PROCOLOR P 88QT03 bus coupling module
  • Honeywell WEB-8000 Controller
  • ABB REX 521 protective relay
  • ABB Protection Relay REX 521
  • ALSTOM MCTI40N1AB0751G Control Module Card
  • ALSTOM MCGG22L1CB0753E High Performance Control Module