Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:
  • GE DS2020FECNRX010A Field Exciter Board
    ❤ Add to collection
  • GE DS2020FECNRX010A Field Exciter Board

    110V-380V
    1A-30A
    5W-130W
    1 year
    30
    United States, France, Japan, Viet Nam, Australia, Russia, Germany, Italy, Arabia

    GE DS2020FECNRX010A Field Exciter Board

    • ¥22000.00
      ¥24520.00
      ¥22000.00
      ¥22000.00
    • Satisfaction:

      Sales: 0

      Review: 0

    Weight:3.600KG
    • Quantity:
    • (Inventory: 36)
Description

GE DS2020FECNRX010A Field Exciter Board


GE DS2020FECNRX010A Field Exciter Board

Part Number DS2020FECNRX010A Manufacturer General Electric Country of Manufacture As Per GE Manufacturing Policy Series Mark VI/VIe Function Module Availability In StockDS2020FECNRX010A is a Field Supply Amplifier Board developed by GE under drive control system. A Field Supply Amplifier Board is a component commonly found in turbine control systems. Its main function is to amplify the low-voltage signal received from the field supply and provide a high-voltage output to the turbine control system. 

It is typically located near the turbine control system's voltage regulator, where it receives the low-voltage signal. It amplifies the signal to the appropriate level needed by the control system and provides a stable and reliable source of power to the system. It is a type of field exciter that is designed for use in industrial power generation and distribution applications. It has a 24 A NRX capability and makes it an ideal choice for use in demanding industrial environments where high current loads are common. It also features a 10 A shunt, which provides additional protection against electrical overload and other types of damage. 

This helps to ensure that the device remains reliable and long-lasting, even when used under challenging operating conditions. Features Multiple prong-type connectors are also included on this GE Line Protection Board. The board is mounted on standoffs on another drive component. The signal wires that connect the board to the component to which it is connected begin on the component to which it is attached. The board and the component to which it is connected produce heat and are intended to be connected to a high-voltage current. As a result, the drive must be placed in an atmosphere with enough free-flowing air to keep the drive and its components cool. Once the drive is mounted, you'll observe if it stays cool or if the temperature rises to the point where it reaches the high-temperature threshold and shuts down. 

First, assess if the drive will be surrounded by other heat-generating equipment and if the components will be too close together. Even if the gadgets generate heat, there is room for the hot air to escape. Fans may be required between the drives and other devices. Hoods are sometimes used to gather warm air and vent it out into the surroundings. Make sure the hoods are clean and large enough to do their job. Make sure there is no equipment in surrounding rooms that heat the walls and contributes to the heat around the drive. Jumpers and Terminal Blocks: Features 7 jumpers and 2 terminal blocks with 3 terminals each. 

The jumpers are labeled JP1 through JP7, and they serve as connectors or switches to configure specific settings or connections on the board. The terminal blocks provide a convenient way to connect wires or cables to the board, typically for power or signal purposes. Prong-Type Connectors: Incorporates a number of prong-type connectors. These connectors are designed to establish electrical connections with external devices or components. They usually consist of male and female connectors that fit together securely, ensuring reliable signal or power transmission. Mounting and Standoffs: Mounted on standoffs, which are raised supports that provide spacing between the board and another drive component. 

This arrangement allows for proper airflow around the board, promoting cooling and preventing heat buildup. The standoffs ensure a secure and stable attachment of the board to the drive component. Signal Lines and Source: The signal lines, which carry data or information, connect to the board and originate from the attached component. These lines establish the communication pathway between the board and the external devices or systems it interacts with. The attached component serves as the source of these signals, providing input or output data to or from the board. 

Heat Generation and Cooling: Both the board and the attached component produce heat as they operate. To maintain optimal performance and prevent damage, the drive must be placed in an area with adequate airflow. Freely moving air helps cool the drive and its internal components. Proper cooling is essential to avoid overheating, which could lead to system malfunctions or automatic shutdowns. Characteristics Jumpers and Terminal Blocks: The board features 7 jumpers and 2 terminal blocks with 3 terminals each. The jumpers are labeled JP1 through JP7, and they serve as connectors or switches to configure specific settings or connections on the board. The terminal blocks provide a convenient way to connect wires or cables to the board, typically for power or signal purposes. Prong-Type Connectors: The board incorporates a number of prong-type connectors. 

These connectors are designed to establish electrical connections with external devices or components. They usually consist of male and female connectors that fit together securely, ensuring reliable signal or power transmission. Mounting and Standoffs: The board is mounted on standoffs, which are raised supports that provide spacing between the board and another drive component. This arrangement allows for proper airflow around the board, promoting cooling and preventing heat buildup. The standoffs ensure a secure and stable attachment of the board to the drive component. Signal Lines and Source: The signal lines, which carry data or information, connect to the board and originate from the attached component. 

These lines establish the communication pathway between the board and the external devices or systems it interacts with. The attached component serves as the source of these signals, providing input or output data to or from the board. Heat Generation and Cooling: Both the board and the attached component produce heat as they operate. To maintain optimal performance and prevent damage, the drive must be placed in an area with adequate airflow. Freely moving air helps cool the drive and its internal components. Proper cooling is essential to avoid overheating, which could lead to system malfunctions or automatic shutdowns. Temperature Monitoring: Once the drive is in operation, it is crucial to monitor its temperature. 

If the temperature exceeds a specific threshold, the system may be designed to automatically shut off to prevent damage. This feature ensures that the drive remains within safe operating limits and avoids potential hazards caused by excessive heat buildup. Proximity to Other Heat-Producing Equipment: It is important to consider the proximity of other heat-producing equipment to the drive. If the drive is surrounded by such devices, it may experience higher ambient temperatures, leading to increased heat accumulation. To mitigate this issue, sufficient space should be provided to allow warm air to escape and prevent heat buildup. Additionally, the presence of other electronics near the drives may necessitate the use of fans or additional cooling mechanisms to maintain proper operating temperatures for all components involved. 

 Contact and Solenoid Outputs For contact outputs, the Mark V only employs magnetic relays of the plug-in variety (no solid state outputs). Each contact is a three-wire form C with a common center conductor, one generally open and one normally closed contact. In a TMR system, the three controllers R, S, and T each independently decide the contact output state, and the relay driver casts two of the three votes. A diagnostic alarm is announced if there is a disagreement among the three controllers. Depending on the jumper settings made on the terminal boards, some outputs can be internally powered by either 115 V or 125 V ac. Transformer-mechanical relay contacts are rated out of the box. 

 Servo-Valve Automatic Calibration The process of Servo-Valve Automatic Calibration, also known as AUTOCAL, is a function that establishes a precise relationship between the position of a servo-valve and the corresponding feedback voltage it generates. This calibration process plays a crucial role in achieving accurate and reliable position control of the servo-valve outputs (SVOs) within a system. AUTOCAL focuses specifically on calibrating the feedback signals in the position control sections of the different SVOs. These signals provide crucial information about the actual position of the servo-valve and are used to ensure precise control and movement of the actuator or device it is associated with.

 The calibration process involves calculating the values of I/O Configuration Constants. These constants are used to scale the input voltage signals received from the device's position, and they determine the proportional voltage output from the feedback devices, typically Linear Variable Differential Transfer/Reactor (LVDT/R). Before initiating the automatic calibration process, several prerequisites must be met. Firstly, the actuator or device connected to the servo-valve must be mechanically adjusted to ensure that it operates within the desired range of motion. This includes setting the mechanical end stops correctly, which define the limits of the actuator's movement. Additionally, the LVDT/R, which is responsible for providing feedback on the position of the servo-valve, needs to be adjusted accurately to the correct minimum voltage position. 

This ensures that the LVDT/R provides consistent and reliable feedback throughout its operating range. Once these mechanical adjustments and LVDT/R positioning are correctly set, the AUTOCAL function can be executed. During the calibration process, the system calculates and determines the appropriate I/O Configuration Constants for each SVO's position control section. These constants serve as scaling factors, converting the input voltage signals into proportional feedback voltages that accurately represent the position of the servo-valve. By calibrating the feedback signals through AUTOCAL, the system achieves enhanced precision and accuracy in controlling the servo-valve and, consequently, the associated actuator or device. 

This calibration process ensures that the servo-valve operates within the desired range, accurately responds to control inputs, and provides reliable position feedback for optimal system performance. Product Attributes The primary purpose is to amplify and regulate the field supply, ensuring stable and uninterrupted operation. This product boasts several key attributes and installation considerations that are essential for optimal functionality. Power Supply Requirements To power the board, a +5 V dc power supply with a current rating of 6 A is required. This supply voltage is crucial for enabling the board to effectively manage the field supply within the drive system. Relay Channels for Versatile Control Features 12 relay channels, providing a high degree of flexibility and versatility in controlling and switching various electrical signals and components within the drive system. 

This capability empowers your system to adapt to different operational requirements. Primary Power Input The specified power supply voltage for the FECNRX010A is 28 V dc, serving as the primary power input for the board. This voltage is essential for sustaining the board's operations and ensuring its reliability. Board Configuration The board incorporates 7 jumpers, identified as JP1 through JP7, allowing for customizable configurations to suit specific operational needs. Additionally, it features 2 terminal blocks, each equipped with 3 terminals, enhancing connectivity options. Installation and Environmental Considerations Mounting: Install the board on standoffs, securely affixed to another component within the drive system. Signal Wires: Ensure that signal wires connecting to the board originate from the attached component, maintaining a secure and reliable connection. 

Heat Generation: Both the board and the attached component generate heat due to high-voltage current connections. Cooling Requirement: To prevent overheating, the drive and its components must be placed in an environment with free-flowing air for adequate cooling. Temperature Monitoring: After installation, diligently monitor the drive's temperature. If it approaches a high-temperature threshold, it may automatically shut off to prevent damage. Nearby Devices: Check if surrounding heat-generating devices might affect the drive's temperature. Ensure adequate spacing between components. Ventilation: Create space for heated air to escape. Consider installing fans between drives and other devices to ensure proper ventilation. Fan Functionality: Confirm that any installed fans are capable of moving enough air and are in good working condition to assist in cooling. Hood Usage: Hoods can be employed to collect and exhaust heated air from the environment if necessary to regulate temperature. Hood Maintenance: Regularly clean and maintain hoods to ensure they are appropriately sized and functioning effectively to dissipate heat. Application Software Application software is developed using in-house software automation tools that select and integrate proven GE control and protection algorithms with the I/O, sequencing, and displays for each application. 

Fixed-point data can be processed at a frame rate of 62.5 ms (16 Hz). The frame rate is the amount of time it takes to read control inputs, condition them, run application software, and send output commands to the control valves. While the turbine is running, changes to the application software can be made with password protection and downloaded to the control module. All application software is stored in nonvolatile EEPROM memory in the control module. The application software is executed sequentially and is represented in the form of a ladder diagram. Maintenance personnel can add or change analog loops and sequencing logic using a library of software building blocks. There are also math blocks available. 

The application software documentation, which includes the primary elementary diagram, I/O assignments, and tuning constant settings, is generated directly from the source code and can be printed on-site. System Control Panel To monitor, control, and protect the unit, the TMR control panel employs three identical control processors, R, S, and T (collectively referred to as Q). Each of the three control processors performs the same operations. The majority of the inputs to the three control processors, as well as the majority of the outputs, are voted on. The Simplex control panel is made up of one control processor, R. As a result, it does not use SIFT technology and is incapable of controlling or protecting a turbine while its single control processor is being repaired. A communicator processor, C; a protective core, P; a power distribution core, PD; a communicator processor digital I/O core, CD; and a control processor digital I/O core, QD1 round out a typical Mark V control panel. A backup communicator processor, D, and additional digital I/O core(s), QD2, are available as optional cores.

  • User name Member Level Quantity Specification Purchase Date
  • Satisfaction :
No evaluation information
  • ABB ACS880-01-025A-3 frequency converter
  • Emerson DeltaV S-series Traditional I/O Modules
  • HONEYWELL EXCEL 5000 OPEN SYSTEM
  • Pepperl+Fuchs RSD-CI2-Ex8 Analog Input Module
  • Bently Nevada 3500/50M tachometer module
  • Woodward 2301A 9907 series electronic load distribution and speed controller
  • ABB IMDSI13 Digital Slave Input Module
  • Eaton XV-102 Touch Screen Display
  • Rockwell ProSoft MVI56-MCM Modbus master-slave communication module
  • Watlow Series CLS200 Controller
  • GE IS230 Series Industrial Managed Layer 2 Switches
  • GE IC693TCM302/303 Temperature Control Module
  • MKS 979B Atmosphere to Vacuum Transducer
  • What scenarios is the Syco Tec 4061 AC motor spindle suitable for?
  • Emerson DeltaV Electronic Marshalling Migration Solution
  • Barber Colman MA41-7153-502 and similar series actuators
  • BARTEC MODEX PROFIBUS 07-7331-2305 Series Interface Module
  • Rockwell Automation 1794 Series FLEX I/O Digital Input Module
  • GE PCI5565 Multi Channel MIL-STD-1553 Interface Card
  • How to install the Rockwell Automation 1757-SRM (B-series) module?
  • KIDDE S732DVT-EST1 Digital Video, 2-Way MPD Data Tx, MM, Can
  • Foxboro Evo ™ FBM217 Discrete Input Module
  • Allen-Bradley SLC 500 ™ 1746 series I/O modules
  • Allen-Bradley SLC 500 ™ Installation Guide for 32 Channel Digital I/O Module
  • Allen Bradley 1746-NI8 Analog Input Module Application Case
  • Rockwell 1746-IB32 Digital Input Module
  • Emerson PACSystems ™ Ethernet Switch SLM082
  • How to install GE IC695CRU320 redundant control unit?
  • Bently 3500/15 AC and DC power modules
  • Horner APG HE693CALKIT simulation module
  • ABB INNPM22 Network Processor Module
  • Eckardt SRI986 Intelligent Valve Positioner
  • Honeywell System 57 5704 Control System
  • Schneider Electric 140CHS 1100 Communication Module
  • Moog CD series compact dynamic brushless servo motor
  • HARTING DIN 41612 connector
  • ABB DAPU100 3ASC25H204 Interface Template
  • ProSoft Technology ILX56-PBM PROFIBUS DPV1 Master/Slave Module
  • Emerson DeltaV S Series Traditional I/O Modules
  • MOTOROLA MVME6100 series VME single board computer
  • Emerson MVME5100 Series VME Bus Processor Module
  • Siemens 6EP1334-3BA00 (SITOP PSU200M) stabilized power supply
  • GE Power Management SR489 Generator Management Relay
  • Eaton MTLx544-S Series (MTL4544/S, MTL5544/S) Relay Power Supply
  • Emerson MVME5100 Series VME Bus Processor Module
  • Teknic SSt-6000-U Digital Servo Drive
  • HIMA HIMatrix MI 24 01 Safety Related Controller Module (HI 800 209 E)
  • Horner Automation MAN0344-03 Industrial Controller/Human Machine Interface (HMI)
  • Emerson Automation Series MC-PHAI01 (51403479-150) 8-Channel Analog Input Module
  • Bently Nevada 3500/42M Proximity Seismic Monitor
  • GE VMIACC5595 Embedded Industrial Control Module
  • Rockwell SLC ™ 500 series 1747-L543 (SLC 5/04 controller)
  • Honeywell WEB-HMI10/CF 10.1 "TFT ARM Cortex-A53 Quad Core 3 Ethernet, 2 USB ports
  • How to install the Rockwell Automation 1756 series ControlNet communication module?
  • National Instruments 6030E/6031E/6032E/6033E series
  • ABB 1TGE120011R1000 motor and feeder control unit
  • Watlow CLS200 series controller
  • Schneider 140DDI84100 Discrete Input Module
  • How to install the Modicon Quantum 140ACI03000 analog input module?
  • Rockwell Automation ControlLogix 5570 and 5560 controllers
  • ABB IEMMU21 module installation unit (rear installation)
  • Endress+Hauser Prosonic T FMU30 Ultrasonic Liquid Level Measuring Instrument
  • ABB SC510 submodule carrier (without CPU)
  • Beijer Mitsubishi Electric E1000 Series Operation Panel
  • HIMA HIMatrix F30 Compact Safety Controller
  • HIMA HIMax Safety Control System
  • HIMA HIMatrix F2 DO 8 01 Remote I/O Module
  • HIMA HIQuad X Safety System
  • HIMA HIMax X-SB 01 System Bus Module
  • How to order KOLLMORGEN Saia PCD series I/O modules?
  • Kollmorgen S700 series digital servo amplifier
  • KOLLMORGEN P70360 High Performance Microstep Driver
  • KOLLMORGEN AKM series synchronous servo motor
  • KOLLMORGEN AKD ®- N servo drive
  • KOLLMORGEN AKD ® Servo driver CANopen communication
  • KOLLMORGEN AKD ® Servo drive fault card
  • SERVOSTAR ® CD series servo amplifier
  • SERVOSTAR ® Usage of CD-LITE servo amplifier
  • SERVOSTAR ™ 601... 620 digital servo amplifier (S600 series)
  • B&R Power Panel 300/400 Touch Screen
  • Emerson S-series Mass Connection Solutions
  • Emerson DeltaV SIS Logic Solver (SLS1508)
  • How to order Emerson DeltaV Ethernet I/O Card (EIOC)?
  • Emerson DeltaV ™ M-series Traditional I/O
  • Emerson DeltaV ™ Electronic Marshalling for Migrations
  • Emerson DeltaV Controller Redundancy Function
  • Emerson DeltaV Bulk Power Supplies
  • Emerson DeltaV SD Plus Controller
  • Emerson DeltaV M Series Virtual I/O Module 2 (VIM2)
  • Emerson DeltaV M Series MD Plus Controller
  • Emerson Ovation ™ Power system (5X00785G09)
  • Emerson DeltaV Intelligent Switch
  • Emerson A6110 Dual Channel Shaft Vibration Monitor
  • Emerson MMS 3210/xxx-xxx Dual Channel Shaft Position Transmitter for Eddy Current Sensors
  • Emerson MMS 3120 Dual Channel Bearing Vibration Transmitter
  • Emerson MMS 677X Dual Channel Bar Chart Indicator
  • Emerson Martens Standard Signal Instrument S 1010
  • Emerson CON021 Eddy Current Signal Converter Ordering Method!
  • How to order AMS 6500 Classic system protection card?
  • Emerson Machine Monitoring Systems RPM Transformer PR 9376
  • Emerson Linear Displacement Sensor PR 9350/.. Series
  • Emerson PR 9376 series eddy current sensor system
  • Emerson Electric Power Absolute Vibration Sensor (PR 9266/.. And PR 9268/..)
  • How to operate Emerson Motion Control FX 490?
  • Emerson The Ovation ™ What fields is the Control System applicable to?
  • Emerson Ovation Distributed Control System Input/Output (I/O) Module
  • Emerson HART High Performance Analog Input Module
  • Emerson Ovation ™ Controller Model OCR1100
  • Emerson PAC8000 Remote I/O
  • Emerson A6500-LC LVDT preamplifier
  • EMERSON A6370 Overspeed Protection Monitor
  • EMERSON A6110 axis relative vibration monitor
  • EMERSON FloBoss ™ S600+ Flow Computer
  • EMERSON CSI 2130 Machinery Health ™ Analyzer
  • AMS 2140 Machinery Health ™ How to operate Analyzer?
  • Emerson AMS Suite: Machinery Health ™ Manager v5.61 Software Installation Guide
  • GE Fanuc Series 90-30 Programmable Controller
  • GE PACSystems RX7i Controller
  • How to install GE Series 90-70 Genius Bus Controller?
  • GE VersaMax ® Programmable controller
  • GE VMIVME-7696 Pentium II processor based on VMEbus single board computer
  • GE VMIVME-7695 Single Slot Pentium II Embedded Module Processor
  • GE VMIVME-7459 Single Slot VME IDE CD-RW/Hard Disk Module
  • GE VMIVME-6016 VMEbus Intelligent 16 Channel Asynchronous Serial Controller
  • GE VMIVME-5620 Intelligent HSD Simulator
  • GE VMIVME-5588 high-speed reflective memory board
  • GE VMIVME-5532L VMEbus fiber optic repeater link
  • How to order GE VMIVME-5531L VMEbus fiber optic repeater link?