Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:
  • GE IS220YTURS1A - IO PACK, TURBINE I/O PACK SIL
    ❤ Add to collection
  • GE IS220YTURS1A - IO PACK, TURBINE I/O PACK SIL

    110V-380V
    5W-130W
    1A-30A
    1 year
    30
    United States, France, Japan, Viet Nam, Australia, Russia, Germany, Italy, Arabia
    IS220YTURS1A - IO PACK, TURBINE I/O PACK SIL
    • ¥12000.00
      ¥24520.00
      ¥12000.00
      ¥12000.00
    • Satisfaction:

      Sales: 0

      Review: 0

    Weight:3.600KG
    • Quantity:
    • (Inventory: 33)
Description
IS220YTURS1A - IO PACK, TURBINE I/O PACK SIL

GE IS220YTURS1A - IO PACK, TURBINE I/O PACK SIL

OVERVIEW

Product Definition and Features:GE IS220YTURS1A - IO PACK, TURBINE I/O PACK SIL is a combination of input/output (I/O) modules designed for turbine systems. It plays a key role in the turbine automation control system, and is mainly used to collect various input signals (such as temperature, pressure, speed, vibration, and other sensor signals) during turbine operation and transmit the processed signals to the control system. At the same time, it can also receive output commands from the control system and drive relevant actuators (e.g. valves, motors, etc.) to achieve precise control of the turbine. Furthermore, the module is Safety Integrity Level (SIL) certified, which means that it complies with specific safety standards and is able to provide reliable safety functions in critical systems.

Principle of operation

Signal acquisition process (input section)

Sensor signal access: the module has multiple input channels for connecting various types of sensors, which are located in critical parts of the turbine. For example, temperature sensors convert temperature signals into electrical signals (e.g., millivolt voltage signals or resistance change signals) by means of thermocouples or RTDs, pressure sensors convert pressure signals into current signals (e.g., 4 - 20mA) or voltage signals, rotational speed sensors output pulse signals, and vibration sensors output electrical signals related to the amplitude and frequency of vibrations.

Signal Conditioning and Conversion: When the sensor signals are connected to the module, they will first pass through the signal conditioning circuit. For weak signals, such as the millivolt signal output from the temperature sensor, it will be amplified; for signals containing noise, it will pass through the filtering circuit to remove the interference components. The analogue signals are then fed into the analogue-to-digital (A/D) converter circuit, which converts them into digital signals for processing by the microprocessor inside the module.The A/D conversion process quantises the analogue signals into digital values according to a preset resolution (e.g. 12 - 16 bit), ensuring highly accurate signal acquisition.

Signal transmission and processing (internal communication)

Data transmission to the microprocessor: The converted digital signals are transmitted to the module's microprocessor via the internal data bus. The microprocessor runs pre-programmed control algorithms and logic to analyse and process these signals. For example, it determines whether there is a risk of overheating in the turbine based on the temperature signal and calculates the actual turbine speed based on the speed signal and compares it to the set speed.

Safety Integrity Function Implementation: Thanks to its SIL certification, the module performs a number of safety functions during signal processing. This may include redundant processing of critical signals, fault detection and diagnostic algorithms. For example, for overspeed protection signals of a turbine, dual redundant acquisition and comparison algorithms may be used to quickly and reliably trigger the safety protection mechanism when an overspeed condition is detected.

Control signal output process (output section)

Receiving control instructions: the output part of the module receives control instructions from the control system, which are transmitted in the form of digital signals to the microprocessor of the module via the communication interface. The control instructions may include control valve opening, motor start/stop and speed adjustment.

Signal drive and output: the microprocessor generates the corresponding output signals according to the control instructions. For digital output signals, such as controlling the start/stop of a motor, the signals go through a digital output driver circuit, which converts the digital signals into level signals that can drive external relays or contactors. For analogue output signals, such as controlling valve opening, the digital signal will first be converted to an analogue signal by a digital-to-analogue conversion (D/A) circuit, and then go through an analogue signal conditioning circuit (including amplification, filtering, etc.), so that the analogue output signal meets the signal requirements of the external device (e.g., motorised valve actuator), thus realising precise control of the turbine actuator.

Performance features

High-precision Signal Acquisition and Processing: High-precision operation can be achieved during signal acquisition and processing, with A/D conversion accuracy of ±0.1% - ±0.5% full-scale accuracy and D/A conversion accuracy at a similar level. This makes it possible to accurately acquire and reduce a wide range of sensor signals and accurately output control signals to ensure precise control of the turbine. For example, temperature measurement can be accurate to within ±1°C and pressure control can be accurate to ±0.5% of the set pressure range.

Safety Integrity Level Compliance: SIL certification is an important advantage in critical turbine system applications. It is capable of meeting specific safety integrity requirements, effectively reducing the risk of system failure and safeguarding the safe operation of the turbine through measures such as redundant design, fault detection and safety protection mechanisms. For example, in safety-related control loops, the hardware and software are designed to ensure that in the event of a failure, the system is able to respond in a safe manner, e.g. by triggering an emergency shutdown procedure.

Multi-Channel Input/Output Functionality: Typically multiple input and output channels are available to facilitate the simultaneous acquisition of multiple turbine parameters and control of multiple actuators. The number of input channels may vary from 16 - 32 and the number of output channels may vary from 8 - 16, depending on the module type. This multi-channel design allows for the control of complex turbine systems, such as multiple cooling valves, multiple lubrication pumps, etc., at the same time.

High immunity to interference: In the industrial environment of turbines, there are various kinds of electromagnetic interference (EMI) and radio frequency interference (RFI). The module can effectively resist these interferences through good hardware design (e.g. shielded enclosure, isolation circuit) and software algorithms (e.g. signal filtering, digital signal error correction). For example, in a strong electromagnetic interference environment, it can still accurately collect and transmit signals to ensure the stability of the turbine control system.

Technical Parameters

Input parameters

Number and range of analogue input channels: There are generally 16 - 32 analogue input channels, capable of receiving a wide range of analogue signal types. For example, the voltage signal range can include - 10V - + 10V, 0 - 10V, etc., and the current signal range can include 4 - 20mA, 0 - 20mA, etc., in order to adapt to the output signals of different sensors.

Digital Input Types and Level Standards: Supports a variety of digital signal types, such as TTL (Transistor Transistor Logic) levels, CMOS (Complementary Metal Oxide Semiconductor) levels, TTL levels generally range from 2V - 5V at high levels and 0V - 0.8V at low levels; CMOS level ranges vary depending on the specific device.

Input Signal Resolution (Analogue Inputs): The analogue input channels can have a resolution of 12 - 16 bits, which allows for more accurate acquisition of analogue signals.

Output Parameters

Number and Range of Analogue Output Channels: Typically there are 8 - 16 analogue output channels, the analogue output range can be 0 - 10V voltage signals, 4 - 20mA current signals, etc., which can be used to control the operating status of external analogue devices.

Digital Output Characteristics: The digital outputs provide sufficient drive capability, with output currents in the tens of milliamps (mA) range, to ensure that external digital devices (e.g. relays, indicators, etc.) can be driven reliably. The output signal levels conform to industry standards, such as 3.3V - 5V (TTL levels) for high levels and near 0V for low levels.

Output signal update frequency (analogue outputs): The analogue outputs have a high update frequency, capable of thousands of times per second, depending on the system setup and requirements, and the high update frequency helps to achieve precise dynamic control of external devices.

Communication parameters

Supported communication protocols: When communicating with the control system, GE-specific communication protocols are supported, and may also be compatible with some industry-standard communication protocols (e.g. Modbus, etc.) to facilitate data interaction with other devices or systems.

Communication rate: In the internal system communication, the communication rate may reach about 10Mbps - 100Mbps, depending on the configuration of the system and the application scenario, to ensure the fast transmission of data between the module and the system.

Physical Parameters

Dimensions: The external dimensions are generally designed according to the installation requirements of the turbine control system, and may range from 15cm - 30cm in length, 10cm - 20cm in width, and 5cm - 10cm in thickness, so as to make it easy to be mounted in the control cabinet or in a specific location of the turbine.

Weight: Typical weight is between 1kg - 3kg, which is not overly burdensome to the installation and structure of the equipment.

Environmental parameters

Operating Temperature Range: Able to operate over a wide range of temperatures, typically from - 20°C to + 60°C, to suit different industrial site temperature conditions.

Humidity range: The relative humidity range is usually 10% - 90% (non-condensing), ensuring normal operation in different humidity environments.

  • User name Member Level Quantity Specification Purchase Date
  • Satisfaction :
No evaluation information
  • Siemens 6AG1204-2BB10-4AA3 Ethernet Switch
  • Siemens 6ES7193-4JA00-0AA0 Terminal Module
  • Siemens ET200SP 6ES7193-6PA00-0AA0 server module
  • Siemens 6ES7231-0HC22-0XA0 Analog Input Expansion Module
  • Siemens 6ES7350-2AH01-0AE0 Counter Module
  • Siemens 6ES7421-7DH00-0AB0 Digital Input Module
  • Siemens 6AV2124-2DC01-0AX0 Comfort Panel
  • Siemens 6ES7193-4CA40-0AA0 ET 200S Electronic Module
  • STOBER POSIDRIVE ® How to install MDS 5000?
  • Siemens 7XV5653-0BA00 dual channel binary signal transmitter
  • Thinklogical Velocity KVM-34 series KVM fiber extender
  • Watlow MLS300 Series Controller
  • ​DHR NLS3000 NLC System (Navigation Control System)
  • Watlow Anafaze CLS200 Series Controller
  • CyberPower UT650EG / UT850EG User’s Manual
  • Thermal Solutions EVS series gas regulated boilers
  • Bosch Rexroth HM20 Hydraulic Pressure Sensor
  • ABB SPAU 341 C Voltage Regulator
  • Rockwell Automation 1585 Ethernet Media
  • Rockwell Automation SmartGuard 600 Controller
  • Rockwell Automation 1756 ControlLogix Communication Module
  • Rockwell Automation Stratix series Ethernet devices
  • A-B Ultra3000 and Ultra5000 with DeviceNet
  • ABB INNIS21 Network Interface Slave module
  • DEIF Undervoltage and overvoltage relay type RMV-112D
  • SAUTER AVM 234S valve actuator (with positioner)
  • REXRTOH INDRAMAT TVD 1.3 power module
  • Honeywell Expert Series-C I/O Module
  • GE PACSystems RX7i power module (IC698PSA100/350 series)
  • Yokogawa AFV40S/AFV40D Field Control Unit (FCU)
  • Schneider 31H2S207 FBM207/b/c Voltage Monitor/Contact Sense Input Modules
  • Emerson DeltaV™ S-series Traditional I/O
  • MKS Type T3B Butterfly Valve (with DeviceNet Interface)
  • Triconex 3624 Digital Output Module
  • ABB 3BSE031151R1 PM865K01 Processor Unit HI
  • GE V7768 VME Single Board Computer
  • HIMatrix F30 01 Safety-Related Controller
  • TOSHIBA Welker Bearing Linear Guides and Wedge Components
  • GE Multilin MIF series digital feeder relay
  • ABB MNSiS Motor Control Center MConnect Interface
  • Emerson PR6426 32mm Eddy Current Sensor
  • Schneider ELAU PacDrive C400/C400 A8 Controller
  • Yokogawa Motor YS1700 Programmable Indicator Controller
  • Honeywell Searchline Excel Infrared Open Circuit Gas Detector
  • Rockwell Automation ICS AADvance Controller
  • ABB Relion ® 615 series RED615 line differential protection and control device
  • DEIF PPU-3 Parallel and Protection Unit
  • Foxboro PBCO-D8-009 Terminal Board (TB)
  • ASEM HT2150/QT2150 Fanless Panel Control Computer (IPC)
  • ABB FOUNDATION ™ Fieldbus Link Device LD 810HSE Ex V1.0
  • ABB Panel 800 Version 6 PP885 Hardware and Installation
  • Konica Minolta CM-3700A-U Plus spectrophotometer
  • Schneider FBM233 Field Device System Integrator Module
  • MTL 8502-BI-DP Bus Interface Module (BIM)
  • ABB DO880 Ability ™ System 800xA ® hardware selector
  • GE VMIVME-2540 24 channel intelligent counter/controller
  • GE VMIVME-3115-010 32-Channel 12-bit Analog Output Board
  • GE Fanuc Automation VMIVME-4140 32-Channel 12-bit Analog Output Board
  • BENTLY 1900/65A General Purpose Equipment Monitor
  • REXROTH Digital axis control HNC100
  • GE Grid Solutions 369 Series
  • ZYGO ZMI 7702 laser head
  • ZYGO ZMI 501A shell
  • ABB PFEA111-65 Tension Electronic Equipment
  • Allen Bradley 1753 Series GuardPLC 1800 Controller
  • Allen Bradley 1747-DCM Direct Communication Module
  • Allen Bradley 1746-NI8 SLC 500 Analog Input Module
  • Allen Bradley 1734 series POINT I/O common terminal module and voltage terminal module
  • Allen Bradley 150 Series SMC Dialog Plus Controller
  • Allen Bradley 1494V series variable depth flange mounted isolation switch
  • AB Allen Bradley 1492 series terminal block
  • Allen Bradley 1485 Series DeviceNet Media System
  • Allen Bradley 1391-DES series digital AC servo drive
  • Allen Bradley 1336 PLUS II Adjustable Frequency Driver
  • Allen Bradley 1336 IMPACT AC Inverter
  • Allen Bradley 1326AB high-performance AC servo motor
  • Allen Bradley DeviceNet Communication Module (1203-GK5/1336-GM5)
  • Allen Bradley 1203-CN1 ControlNet Communication Module
  • Rockwell Automation PanelView Standard Series Terminal (Model 2711)
  • Siemens SIMATIC S7-300 Digital Output Module (6ES7322-1BH01-0AA0)
  • Siemens SIMATIC S7-300 Digital Input Module (6ES7321-1BH02-0AA0)
  • Rockwell Automation 836T Series Differential Pressure Controller
  • Schneider Modicon Quantum 140DRA84000 Discrete Output Module
  • Schneider Modicon Quantum 140CPS11420 power module
  • Schneider Modicon Quantum 140ACO02000 Analog Output Module
  • Schneider Modicon Quantum 140CPU65260 Unity Processor
  • SIEMENS 6GK1105-2AA10 SIMATIC NET series optical switching module (OSM ITP62)
  • Modicon Quantum 140XBP01000 racks backplanes
  • ABB NTST01 Time Sync Link TU Time Sync Link Terminal Unit
  • Siemens 6ES7954-8LC02-0AA0 SIMATIC Memory Card
  • Siemens 6ES7511-1AK02-0AB0 SIMATIC S7-1500 CPU 1511-1 PN Central Processing Unit
  • Allen Bradley 1769-L32E (CompactLogix L32E) Programmable Automation Controller
  • Allen-Bradley 2711P-RDT7C PanelView ™ Plus 6 700 Industrial Human Computer Interface
  • Siemens 6AV6642-0DA01-1AX1 SIMATIC OP177B Industrial Human Machine Interface (HMI)
  • Emerson PACSystems RX3i I/O Module
  • Moxa EDS-508A series network managed Ethernet switch
  • Moxa EDS-408A series industrial Ethernet switch
  • ABB TK821V020 (3BSC95020R1) battery cable
  • Sonnax 6R80L-6R100-ZIP Transmission Valve Body Repair Kit
  • Moxa EDS-308 series industrial Ethernet switch
  • ABB Symphony Plus S+Control BRC410 Controller
  • GE Qualitrol IC670ALG230 Analog Input Module
  • ABB DCS series thyristor power converter
  • Schneider Electric Foxboro ™ DCS FBM201/b/c/d analog input module
  • Eaton XV-440-10TVB-1-20 Human Machine Interface (HMI)
  • Bentley Baker Hughes 2300 Series Vibration Monitors
  • Allen-Bradley IMC ™ S Class Compact Motion Controllers (IMC-S/23x model)
  • Siemens 6AV7875-0BC20-1AC0 SIMATIC HMI
  • Siemens 6AV6645-0CB01-0AX0 SIMATIC MOBILE PANEL 277 Mobile Panel
  • Siemens 6DD1607-0AA2 module functional characteristics!
  • Installation Requirements for GE IC693MDL655 Discrete Input Module!
  • ABB AI820 3BSE008544R1 Analog Input Module
  • How to order Siemens 6EP1336-3BA10 power module?
  • ABB AO810 REP3BSE008522R1 Analog Output Module
  • Siemens SIMATIC S7-400 EXM 438-1 I/O Expansion Module (6DD1607-0CA1)
  • Bently Nevada 3300 XL 8mm Proximity Sensor System
  • What are the scenarios for using Moog Rugged Motion Controller?
  • GE Grid Solutions Hydran M2 (Mark III) Enhanced DGA monitoring for transformers
  • Fanuc A16B-3200-0110 CNC System Module
  • ABB PM866AK01 processor unit (3BSE076939R1)
  • ABB MControl Motor and Feedline Control Unit (1TGE120011R1000)
  • ABB DSDP 140B Counter Board (5716001-ACX)
  • ABB M10x Motor Control and Protection Unit (1TNA920500R0002)
  • Foxboro Evo ™ Standard 200 Series Baseplates(PSS 31H-2SBASPLT)
  • Foxboro I/A Series Compact 200 16 Slot Horizontal Substrate (31H2C480B4)
  • DeltaV ™ Flex Connect Solutions for Foxboro ™ I/A Series 100 I/O
  • Foxboro Evo ™ FBM218 module
  • Yokogawa OpreX ™ STARDOM FCN-RTU Remote Terminal Unit