Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

SIEMENS SIMOTICS 1LE8 series low-volt​age high-power motor

来源: | 作者:FAN | 发布时间 :2025-11-25 | 4 次浏览: | Share:


SIEMENS SIMOTICS 1LE8 series low-voltage high-power motor

Product Overview and Core Parameters

1. Series positioning and differences in sub series

The SIMOTICS 1LE8 series is a low-voltage high-power motor developed by Siemens specifically for the Chinese market. Based on a global design platform, it focuses on high reliability and high power density and is divided into two sub series. The core differences are shown in the table below:

Comparison dimension 1LE8003 (universal type) 1LE8033 (frequency conversion specific type)

Core use: General scenario (mainly direct supply, optional frequency conversion) Frequency conversion specific scenario (≤ 690V), suitable for steel, lifting, etc

Insulation usage level: 130 (B) for direct supply, 155 (F) for variable frequency, and 155 (F) for variable frequency operation

Bearing configuration: Deep groove ball/angular contact ball bearings (optional insulated bearings), standard insulated bearings (anti stray current damage)

Temperature protection optional PTC/PT100/PT1000 standard dual group PTC (145 ℃ alarm/155 ℃ trip)

Variable frequency voltage upper limit ≤ 460V ≤ 690V (optional N90 special insulation, no need for variable frequency filter)

2. Core rated parameters (50Hz)

Machine base number, pole number, rated power range (kW), rated speed (rpm), efficiency (4/4 load,%), power factor (4/4 load), weight (IMB3, kg)

315 2 220~315 2978~2982 95.8 0.89~0.91 1380~1590

315 4 220~315 1490~1491 96.0 0.85 1480~1650

315 6 160~250 990~991 95.8 0.85 1370~1700

315 8 132~200 740~741 94.0~94.6 0.80 1320~1690

355 2 355~500 2982~2988 95.8 0.89 2200~2300

355 4 355~500 1490~1491 96.0 0.85~0.87 1960~2290

355 6 280~400 993~994 95.8 0.85 2150~2270

355 8 220~315 743~745 94.6 0.81 2140~2250


Detailed explanation of mechanical characteristics

1. Structure and installation

Machine base and appearance: The machine base material is gray cast iron, standard color RAL7030 (stone gray), supports multiple installation structures (compliant with IEC 60034-7), and the core installation types and codes are as follows:

Installation type code (14th digit of order number) Applicable scenarios

IM B3 A machine base with feet, end cover without flange

IM B35 J machine base with feet, end cover with flange

The IM V1 G machine base does not have feet, and the end cover has a flange

Junction box: standard top mounted (order number 16th digit is 4), rotatable 4 × 90 °, supports upper right (5) and upper left (6) configurations; The 315 machine base contains 2 main inlet holes (M72 × 2), and the 355 machine base contains 3 main inlet holes, all of which are sealed with screw plugs. The maximum number of auxiliary terminals is 24 (L97 auxiliary junction box is required for excess).

2. Bearings and lubrication

Bearing configuration: The standard is deep groove ball bearings (6316 C4 for 315 machine base 2-pole, 6319 C4 for 4-8 pole; 6317 C4 for 355 machine base 2-pole, 6320 C4 for 4-8 pole), and 1LE8033 comes with insulated bearings as standard; The L22 enhanced design (with cylindrical roller bearings on the drive end) is available for high arm suspension scenarios.

Lubrication parameters (horizontal installation, 40 ℃ environment):

Machine base number, pole number, lubrication cycle (h), amount of grease added (g)

315 2 3000 30

315 4 4000 40

315 6/8 6000 40

355 2 3000 30

355 4 4000 60

355 6/8 6000 60

Note: For every 10 ℃ increase in ambient temperature, the lubrication cycle is shortened by 50%.

3. Cooling method

Standard configuration: IC411 self fan cooling (radial centrifugal fan, independent of rotation direction);

Optional: F70 independent drive fan (recommended for low speed/over rated speed to reduce noise), the motor length increases by Δ L after installation (315 base+180mm, 355 base+150mm), and the fan parameters are 220V Δ/380VY, 50Hz, 1100W.

image.png

Electrical characteristics and protection

1. Voltage and frequency adaptability

Voltage deviation: Supports deviation between Class A (± 5%) and Class B (± 10%) of IEC 60034-1, with a temperature increase of approximately 10K for Class A and long-term operation not recommended for Class B;

Frequency deviation: Class A ± 2%, Class B+3%/-5%;

Core voltage configuration:

1LE8003:380VΔ/660VY、400VΔ/690VY(50Hz);

1LE8033: 500V Δ (standard), 690VY (options 0-6).

2. Motor protection

Winding protection: Supports PTC, PT100, PT1000 three types of components, and the selection corresponds to the 15th digit code of the order number:

Protection type code, number of wiring terminals, core parameters

Unprotected A --

Single set PTC (trip 155 ℃) B 2 three core series connection, suitable for heavy-duty starting

Dual group PTC (alarm 145 ℃/trip 155 ℃) C 4 1LE8033 standard configuration

3 2-wire PT100 H 6 with high precision and good linearity

1 2-wire PT1000 K 2 for more accurate temperature monitoring

Bearing protection: optional Q72 (dual ended 2-wire PT100, 4 terminals), Q78 (dual ended 3-wire PT100, 6 terminals), Q79 (dual ended dual supported 3-wire PT100, 12 terminals);

Moisture protection: Options Q04 (1LE8003)/Q02 (1LE8033), 220V, 100W moisture-proof heating belt, works when stopped and closes when running to avoid winding condensation.

3. Characteristics of frequency conversion applications

1LE8003: Variable frequency voltage ≤ 460V, maximum safe speed 3600rpm (2-pole), frequency exceeding 60Hz requires special dynamic balancing;

1LE8033: Variable frequency voltage ≤ 690V, maximum safe speed 3600rpm (2-pole), peak voltage withstand value 3200Vpp (690V variable frequency), supports field weakening operation, and requires forced cooling when the load torque exceeds the limit.


Selection and Option Configuration

1. Order number rules (16 digit code)

Taking 1LE8003-3AA33-3 □□□□ as an example, the meaning of key positions is:

Explanation of the meaning of digits and example values

1-6 series identification 1LE800/1LE803

7 sub series 3=1LE8003, 3=1LE8033

8-9 aircraft seat number 3A=315, 3B=355

10 poles A=2, B=4, C=6, D=8

11-12 Voltage/Frequency 33=380V Δ/660VY 50Hz

13 iron core length 3=standard length

Installation type A=IM B3, J=IM B35

15 winding protection B=single group PTC, C=double group PTC

16 junction box position 4=top mounted, 5=upper right side, 6=upper left side

2. Core Option List

Option Number Function Description Applicable Scenarios

L22 enhanced cantilever force design (with cylindrical roller bearings at the drive end) for high radial loads (such as belt drives)

F70 independent drive fan running at low/over rated speed

H00 Rainproof Cover Outdoor Installation

Q04/Q02 moisture-proof heating belt (220V, 100W) high humidity/large temperature difference between day and night environment

L97 auxiliary junction box (2 M20 × 1.5 interfaces) with over 24 auxiliary terminals

Q80 warranty extended to 24 months, requiring long-term stable operation scenarios

H20 protection level upgraded to IP65 for dust/water spray environment


Typical application scenarios

1LE8003: General machinery (centrifugal fans, centrifugal pumps, air compressors), food and beverage production lines, and ordinary transmission equipment;

1LE8033: Variable frequency drive (steel rolling mill, crane, paper machine), variable speed load (adjustable speed fan/pump), harsh industrial environment.


Key issue

Question 1: What are the core differences between the LE8003 and 1LE8033 sub series? How to choose in the frequency conversion scenario?

Answer: The core difference between the two focuses on frequency conversion adaptability and protection configuration, and the selection should be based on the frequency conversion voltage, load type, and environmental severity

Comparison of core differences:

Comparison dimension 1LE8003 (universal type) 1LE8033 (frequency conversion specific type)

The upper limit of the frequency conversion voltage is ≤ 460V (with a filter added to the frequency converter end) ≤ 690V (optional N90 special insulation, no filter required)

Insulation usage level: 155 (F) for variable frequency operation, 130 (B) for direct supply, 155 (F) for all scenarios (optimized for variable frequency operation)

Optional insulated bearings (anti stray current) with standard insulated bearings (mandatory to avoid damage from frequency conversion stray current)

Temperature protection optional single group PTC/PT100 standard dual group PTC (145 ℃ alarm+155 ℃ trip, safer)

Suitable for frequency conversion scenarios with low voltage (≤ 460V), light load frequency conversion (such as fan speed regulation), high voltage (≤ 690V), and heavy load frequency conversion (steel/crane)

Selection logic:

If the variable frequency voltage is ≤ 460V, the load is universal speed regulation (such as fan/pump), and the budget is limited, choose 1LE8003 (additional insulation bearing option L27 is required);

If the variable frequency voltage is ≤ 690V, the load is heavy load/harsh environment (such as steel rolling mills, cranes), and high reliability is required, choose 1LE8033 (with standard insulated bearings and dual PTC protection, no additional configuration required).


Question 2: How to calculate the rated power derating of LE8 series motors in high altitude (>1000m) or over temperature (>40 ℃) environments? Please provide examples to illustrate.

Answer: In high-altitude/over temperature environments, the rated power needs to be adjusted through the power conversion factor k-HT, and the formula is:

P adm=P rated x k HT, where P adm is the allowable power, P rated is the rated power, and k − HT needs to be obtained from the table;

K-HT coefficient table (excerpt from key scenarios): | Altitude (m) | Environmental temperature<30 ℃ | 30~40 ℃ | 45 ℃ | 50 ℃ | 55 ℃ | 60 ℃ | | 1000 | 1.07 | 1.00 | 0.96 | 0.92 | 0.87 | 0.82 | | 1500 | 1.04 | 0.97 | 0.93 | 0.89 | 0.84 | 0.79 | | 2000 | 1.00 | 0.94 | 0.90 | 0.86 | 0.82 | 0.77 | | 3000 | 0.92 | 0.86 | 0.82 | 0.79 | 0.75 | 0.70|

Example: Taking 1LE8003-3BA33 (355 base, 2-pole, rated power 355kW) as an example:

If installed at an altitude of 2500m and an ambient temperature of 45 ℃, the table shows k-HT=0.86, and the allowable power P ADM=355 × 0.86 ≈ 305.3kW; if installed at an altitude of 3000m and an ambient temperature of 50 ℃, k-HT=0.79, Allowable power P ADM=355 × 0.79 ≈ 279.5kW; note: After derating, it is necessary to ensure that the actual load power is ≤ P ADM to avoid motor overheating and damage.


Question 3: What are the configurations of the bearing system for LE8 series motors? How to choose a bearing scheme based on cantilever force requirements?

Answer: The bearing configuration is divided into standard and enhanced schemes, and the selection needs to match the size of the cantilever force at the shaft end (such as the load on the pulley and coupling):

Bearing configuration type:

Applicable scenarios for configuration scheme: Bearing type (drive end/non drive end) Maximum allowable cantilever force (example: 315 machine base 4-pole, N)

Standard solution (default) for ordinary loads (such as coupling transmission), deep groove ball bearings (6319 C4/6319 C4) with radial 7850N and axial 9290N (horizontal installation)

Enhancement scheme (L22) for high cantilever force (such as belt drive) cylindrical roller bearings (NU319/6319 C4) with radial lifting of 30%~50% (specific details need to be checked in the selection table)

Insulation scheme (L27) Frequency conversion scenario (anti stray current) Insulation deep groove ball bearing (INS. 6319 C4/...) Same as standard scheme, adding insulation layer

Selection logic:

Step 1: Calculate the actual cantilever force F Q=C × F U, where F U=2 × 10 7 × P/(n × D) (P is the rated power kW, n is the speed rpm, D is the pulley diameter mm), and C is the preload coefficient (flat belt=2, V-belt=2-2.5); Step 2: Compare the calculated value with the maximum allowable cantilever force of the standard solution: If F Q ≤ the standard value, choose the standard solution (no additional configuration required); If F Q>standard value, choose the enhancement scheme (L22) (replace the cylindrical roller bearing at the driving end);

If it is a frequency conversion scenario, regardless of the magnitude of the cantilever force, an insulation scheme (L27) should be added to avoid damage to the bearings caused by stray currents.

Example: The 315 base 4-pole motor drives a V-belt pulley (D=200mm) with a rated power of 250kW and a speed of 1490rpm,

F U=2 × 10 7 × 250/(1490 × 200) ≈ 1678NF Q=2.5 × 1678 ≈ 4195N < standard value 7850N, choose the standard solution.

image.png

  • GE VPROH2B IS215VPROH2BC turbine protection board
  • GE F650BFBF2G0HIE feeder protection relay
  • GE SLN042 IC086SLN042-A port unmanaged switch
  • GE SR489-P1-HI-A20-E Generator Management Relay
  • GE IS400JPDHG1ABB IS410JPDHG1A track module
  • GE IS410STAIS2A IS400STAIS2AED Industrial Control Module
  • GE IS410STCIS2A IS400STCIS2AFF Industrial Control Module
  • GE DS200DCFBG2BNC DS200DCFBG1BNC DC Feedback Board
  • GE VME5565 VMIVME-5565-11000 332-015565-110000 P Reflective Memory
  • GE VMIVME-7807 VMIVMME-01787-414001 350-00010078007-414001 D module
  • GE IS220PDOAH1A 336A4940CSP2 Discrete Output Module
  • GE VMIVME-4150 Analog Output Module
  • GE WESDAC D20 PS Industrial Power Module
  • GE 369B1860G0031 servo drive module
  • GE 369B1859G0021 Input/Output Module
  • GE 208D9845P0008 Motor Management Relay
  • GE IS420UCSCH1A-F.V0.1-A Independent Turbine Controller
  • GE D20EME10BASE-T 820-0474 Ethernet Interface Module
  • GE DS200DCFBG2BNC MRP445970 DC Feedback Board
  • GE IC800SSI228RD2-EE servo motor controller
  • GE IS200JPDMG1ACC S1AT005 Digital Input/Output (I/O) Module
  • GE IS200TSVCH1AED servo input/output terminal board
  • GE IS200TTURH1CCC S1DF00Z Terminal Turbine Plate
  • GE IS200TSVCH1ADC S1CX01H servo input-output board
  • GE IS200TRPGH1BDD S1C5029 Trip Solenoid Valve Control Board
  • GE IS220YAICS1A L Analog Input/Output Module
  • GE UCSC H1 IS420UCSCH1A-F-VO.1-A Controller Module
  • GE UCSC H1 IS420UCSCH1A-B Communication Processing Module
  • GE IC697VDD100 Digital Input Module
  • GE V7768-320000 3509301007768-320000A0 Controller Module
  • GE IS410TRLYS1B Relay Output Module
  • GE IS415UCVGH1A V7666-111000 VME Control Card
  • GE IC800SSI216RD2-CE servo motor controller
  • GE VMIVME-5565-010000 332-01565-010000P Reflective Memory
  • GE IC695ALG508-AA Analog Input Module
  • GE IC660EPM100J Power Monitoring and Control Module
  • GE RS-FS-9001 362A1052P004 Redundant Fan System Module
  • GE IS220UCSAH1AK independent processor module
  • GE 369-HI-0-M-0-0-0-E Motor Management Relay
  • GE CIFX50-C0 interface board
  • GE SR469-P5-H-A20-T Motor Management Relay
  • GE WES5120 2340-21005 power module
  • GE WES5120 2340-21003 Control Module
  • GE D20MIC10BASE-T 820-0756 Ethernet Module
  • GE WES13-3 5167-001-0210 Mechanical Relay Output Module
  • GE WES13-3 2508-21001 Control Board Module
  • GE D20ME 526-2005-216943 Input/Output Module
  • GE D20EME 0526-21170-1 PLC module
  • GE 2400-21004 2010-3101-0442 Sensor
  • GE DS200DCFBG2BNC MRP569662 Analog Input/Output Board
  • GE DS200DCFBG2BNC MRP569662 DC Feedback Board
  • GE IC695CPE400-ABAB Controller
  • GE DS200DCFBG2BNC MRP433745 Drive Control Board
  • GE DS200DCFBG2BNC MRP420024 DC Feedback Board
  • GE IS200PPPBH2CAA power module
  • GE IS210MACCH2AGG Compact Controller
  • GE IS200AEPAH1AFD Printed Circuit Board
  • GE IS200AEPAH1ACB redundant power module
  • GE IS200WREAS1ADB Relay Output Module
  • GE IS200AEPAH1AHD Printed Circuit Board
  • GE IS200WEMAH1AEA Wind Energy Main Assembly
  • GE IS210MACCH1AGG Turbine Control Module
  • GE IS230TNRLH1B Terminal Base Station Relay Module
  • GE DS200PCCAG1ACB Power Connection Card
  • GE DS200SI0CG1AEA Instant Overcurrent Card
  • GE DS200SHVMG1AGE servo valve interface module
  • GE DS200SI0CG1A6A Input/Output Module
  • GE DS200RT8AG3AHC Programmable Logic Controller
  • GE VMICPCI-7632-03310 IS215UCCAH3A 350-657362-003310J Rack mounted Input/Output Module
  • GE WEA13-13 2508-21001 Embedded Digital Module
  • GE WES5120 2340-21004 Controller Main Module
  • GE WES5120 2340-21006 on-site control host
  • GE WESDAC D20ME 18-MAR-13 Excitation Control Module
  • GE D20 EME 27-APR-13 Input/Output Module
  • GE D20 EME 2400-21004 Substation Controller
  • GE SR745-W2-P1-G1-HI-A-L-R-E Transformer Protection Relay
  • GE SR745-W2-P1-G1-HI-A-L-R Transformer Management Relay
  • GE IS230TNDSH2A Independent Output Relay Module
  • GE IS200TDBSH2ACC Terminal Module
  • GE PMC-0247RC-282000 350-93750247-282000F Disk Drive
  • GE VMIVME-5576 high-speed fiber optic reflective memory
  • GE 760-P1-G1-S1-LO-A20-R-E feeder management relay
  • GE 760-P1-G1-S1-LO-A20-R 760 Series Management Relay
  • GE 760-P5-G5-S5-HI-A20-R-E Motor Management Relay
  • GE IS200AEPAH1BKE IS215WEPAH2BB Printed Circuit Board
  • GE IS210BPPCH1AEC Programmable Monitoring System
  • GE WESDAC D20ME II Remote Terminal Unit (RTU) Main Processor Card
  • GE IC693DSM302-AE Discrete Output Module
  • GE IS220PRTDH1A 336A4940CSP6 temperature sensor input module
  • GE IS420ESWBH3AX Ethernet Switch
  • GE EVPBDP0001 EVPBDP032 output module
  • GE V7668A-131000 350-93100076668-131000 B Control Module
  • GE IS200SPROH1AAB MRP663860 Turbine Protection Relay
  • GE VG5SK8I052311 PM0N2000 Digital Input Module
  • GE MVR1600-4601 air-cooled rectifier module
  • GE CT11T7F10PN1 PMC676RCTX V2.3 01 16 C1145 CR11 V2.X Network Interface Card
  • GE IS215UCVHM06A IS200PMCIH1ACC Controller
  • GE IC695CPU315-BB Programmable Logic Controller
  • GE WES5120 5120-1506 High Performance Field Controller
  • GE D20-PS LFDSC143-4000 processor
  • GE 8811-IO-DC 8811-IO-DC-01 Digital Input/Output Module
  • GE VMIVME-7750 VMIVMME-7750-834 350-02775-834 D Bus Interface Module
  • GE VMIVME-7750 VMIVMME-7750-760000 350-027750-76000 N Bus Processor
  • GE IS210BPPBH2BMD redundant power module
  • GE IS220PDIAH1A 336A4940CSP1 Discrete Input Module
  • GE IC698CMX016 VMIVME-5567-000 350-005567-000 Industrial Module
  • GE V7768-320000 350-9301007768-320000 A0 Controller Module
  • GE IS215VCMIH2CA IS200VCMIH2CAA Communication Interface Board
  • GE IS215UCVGM06A IS215UCVGH1A VMIVMME-7666-11000 Serial Communication Module
  • GE SR745-W3-P5-G5-HI Transformer Protection Relay
  • GE IS220PDIIH1B 336A5026ADP1 Input/Output Module
  • GE IS200SDIIH1ADB MRP683026 Contact Input Isolation Terminal Board
  • GE WESTEM D20 M++CNC System
  • GE SR745-W2-P1-G1-HI-E-H Generator Relay Protection Device
  • GE SR469-P5-HI-A20-H motor protection relay
  • GE IS200TDBTH6ACD gas turbine control system module
  • GE WESDAC D20 C Combination Module
  • GE IC698CMX016 Control Memory Switch Module
  • GE SRPE60A 40 rated plug
  • GE 94-164136-001 motherboard control board
  • ABB PCD237A101 3BHE028915R0101 excitation control module
  • ABB XZC826A102 3BHE036348R0102 control module
  • ABB SAFT183VMC Safety Monitoring and Control Module
  • ABB LD 810HSE EX 3BSE091722R1 fieldbus link equipment
  • ABB RED615 HCDCACADAAHC2BNN11E Line Differential Protection and Control
  • ABB UFC760BE41 3BHE004573R0141 Industrial Computer Board
  • ABB 1TGE120011R2200 Motor Feed Control Unit
  • ABB PM865 3BSE030193R1 Compact Programmable Controller