Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

Yokogawa AFV40S/AFV40D Field Control Unit (FCU)

来源: | 作者:FAN | 发布时间 :2025-09-23 | 387 次浏览: | Share:


Yokogawa AFV40S/AFV40D Field Control Unit (FCU)

Product positioning

Core role: AFV40S/AFV40D is the core component of the CENTUM VP Field Control Station (FCS), responsible for "field signal acquisition, control logic operation, equipment linkage control" functions, adapted to FIO (Field Input/Output) systems, supports remote I/O node expansion, and is widely used in process industries such as petrochemicals, power, and pharmaceuticals.

Differentiated design: AFV40S is a single configuration unit suitable for non safety critical scenarios; AFV40D is a dual redundant configuration (with redundant power supply, processor, and communication bus), suitable for critical control circuits that require extremely high reliability, such as reactor temperature control and emergency shutdown systems.


Core technical specifications

(1) General basic parameters

Power outage data protection

The main memory is equipped with battery backup, with a maximum power-off protection time of 72 hours and a battery charging time of at least 48 hours, ensuring that control programs and configuration parameters are not lost after power failure and do not need to be reloaded after re powering on.

READY contact output: 3 terminals (NC normally closed, NO normally open, C common terminal), switch contact state in case of FCU fault (such as NC opening and NO closing in case of fault), contact rated parameters: maximum 250V AC/30V DC voltage, 2A current, 125VA power, can be connected to external alarm or monitoring equipment.

communication interface

Vnet/IP interface: Dual redundancy design (AFV40S can provide single/dual power supply, AFV40D requires dual redundancy), used for communication with the operator station (HIS) and other control units of the CENTUM VP system, in compliance with industrial Ethernet standards, ensuring reliable data transmission.

ESB bus interface: AFV40S supports single configuration or dual redundancy, AFV40D enforces dual redundancy and is used to connect FIO node units (ANB10 series) or optical ESB bus relay modules (ANT401/ANT411), expanding on-site I/O access capabilities.

Environmental monitoring (HK function)

Built in HKU (House Keeping Unit) monitors the environmental status of the connected cabinet (such as temperature and fan operation status) through the HK bus or optical ESB bus, and displays the HKU operation status on the HIS (Human Machine Interface), supporting system alarm output.

HK bus parameters: Supports connecting HKUs to cabinets such as ACUKT1/ACUKT2/ACB51/XLCabinet, with a maximum of 9 cabinets connected to a single FCU. The total length of the HK bus cable (AKBHKU) is up to 100 meters (daisy chain connection).

(2) Equipment configuration inside the cabinet

Standard equipment

Each FCU cabinet includes: 1 FCU, 1 distribution board with built-in HKU (supporting single/dual power), 2 vertical power bus units (AEPV7D, 1 front and 1 rear), up to 4 node fan units (ANFAN, 2 front and 2 rear, depending on the number of nodes), and 4 cabinet door fan units (AIP601, 2 front and 2 rear cabinet doors).

FCU module configuration

Power module: Supports PW481/PW482/PW484, dual redundant configuration requires 2 modules of the same model to ensure seamless switching in case of power failure.

Processor module: Supports CP471 (CENTUM VP R6.05 and above) or CP461 (default standard), dual redundancy configuration requires 2 modules of the same model, and only authorized engineers from Yokogawa can perform the replacement of CP461 to CP471.

ESB bus coupler module: Supports EC401 (single/dual redundancy) or EC402 (single/dual redundancy), with two identical modules required for dual redundancy configuration to expand ESB bus nodes (EC401 supports up to 9 nodes, EC402 supports up to 11 nodes).

I/O module: Supports up to 6 non-standard I/O modules, which need to be selected according to the type of on-site signal (such as analog input, digital output) and adapted to the FIO system.

(3) Power supply and power consumption

Description of parameters AFV40S/AFV40D (maximum node configuration)

The supply voltage of 100-120V AC/220-240V AC (50/60Hz) and 24V DC should be specified through suffix codes, such as "1" representing 100-120V AC and "4" representing 24V DC

Maximum power consumption (100-120V AC) 2500VA node unit power consumption at full configuration, reduced power consumption in single node configuration

Maximum power consumption (220-240V AC) 2860VA-

Maximum power consumption (24V DC) 71A-

Power protection dual power redundancy (AFV40D mandatory, AFV40S optional) The distribution board supports dual power input and automatically switches in case of failure

(4) Mechanical and environmental parameters

Cabinet size and weight

Dimensions (width x depth x height): approximately 600mm x 800mm x 2105mm (including cabinet), with dimensional tolerances in accordance with the JEM 1459 standard (± 0.8mm below 120mm, standard tolerances above 120mm).

Weight: The empty cabinet weighs about 240kg, and the maximum node configuration (11 node units) is about 360kg. During installation, it is necessary to ensure that the load-bearing bracket of the cabinet meets the load requirements.

environmental adaptability

Working temperature: -10 ℃~+50 ℃ (depending on the cabinet door fan and node fan for heat dissipation); Storage temperature: -20 ℃~+60 ℃.

Protection level: IP20 (only applicable to internal components of the cabinet, must be installed in a closed cabinet to avoid direct contact with dust and liquids).

Anti interference: Compliant with industrial electromagnetic compatibility (EMC) standards, refer to the CENTUM VP system overview document (GS33J01A10-01EN) for details.

Installation restrictions and configuration requirements

(1) Node unit expansion restrictions

Number and type of nodes

A single FCU can support up to 13 node units, including ESB bus node units (ANB10 series) and optical ESB bus relay module units (ANT10U), and can install up to 11 units in the cabinet (5 in the front and 6 in the back).

Remote node expansion: It needs to be connected through the optical ESB bus relay main module (ANT401/ANT411), and the relay module needs to be installed in slots 1-6 of the FCU (dual redundant configuration needs to be installed in pairs, single configuration needs to be installed in the order of slots 1, 3, and 5). The maximum transmission distance of the optical fiber cable is 50km.

Fan unit selection rules

The number of node fan units (ANFAN) should be determined based on the total number of node units in the cabinet to ensure sufficient heat dissipation and avoid module overheating

Number of required node fan units for the total number of node units (ANB10+ANT10U) in the cabinet

0-4 1

5-9 2

10 3

11 4

(2) Hardware Installation Specification

Cabinet grounding and wiring

Power wiring: M6 screw terminals are used, supporting dual power systems (main/backup power needs to be distinguished), and the input voltage should be consistent with the suffix code (such as 100-120V AC or 24V DC).

Grounding requirements: Use M8 screw terminals, with a protective grounding (PE) resistance of ≤ 4 Ω, to ensure the safety of personnel and equipment in case of leakage.

READY contact wiring: M4 screw terminals are used, and NC/NO contacts need to be selected according to the requirements of external alarm devices.

Module installation sequence

The node units inside the cabinet need to be installed in the order of "ANB10 series (ESB bus nodes) first, then ANT10U (optical ESB relay units)" to avoid communication conflicts.

The dual redundant modules (power supply, processor, ESB coupler) need to be installed in adjacent slots to ensure synchronization of redundant switching signals.

Cable restrictions

HK bus cable (AKBHKU): total length ≤ 100 meters. When connecting multiple cabinets in a daisy chain, the length of each cable segment needs to be included in the total length.

ESB bus cable (YCB301): The pre wiring inside the cabinet has been completed, but the cable between ANB10 and ANT10U needs to be connected on site, and parallel laying with power cables should be avoided (spacing ≥ 300mm) to reduce electromagnetic interference.

Model code and configuration options

(1) AFV40S (Single Field Control Unit) Model Code

Model format: AFV40S - [suffix code 1] [suffix code 2] [suffix code 3] [suffix code 4] [suffix code 5] [suffix code 6] [suffix code 7]+option code Core suffix code meaning:

Description of optional values for suffix code bits

1 (Type) A/S A=compatible with CP471 processor (R6.05 and above); S=Compatible with CP461 processor (default)

2 (Vnet/IP) 3/4 3=dual redundant Vnet/IP+single power supply; 4=Dual redundant Vnet/IP+dual power supply

3 (ESB bus) 1/2/3/4 1=single ESB (EC401 × 1); 2=Dual redundant ESB (EC401 × 2); 3=Single ESB (EC402 × 1); 4=Dual redundant ESB (EC402 × 2)

5 (power type) 1/2/4 1=100-120V AC; 2=220-240V AC; 4=24V DC

Option code (optional as needed):

/ - S1F: Single ESB bus node unit (single power supply, model ANB10S-3  5),  is the number of units (1-9/A=10/B=11).

/ - FAN: Node Fan Unit (ANFAN),  is the number of fans (1-4, determined by the total number of nodes).

/CH: Channel base with cable holes (rear 300 × 40mm hole, factory equipped with filling plate), but CE/RCM/EMC/KC certification cannot be selected at the same time after selecting this option.

/ATDOC: Includes explosion-proof manual (compliant with ATEX directive, applicable to potentially explosive environments).

(2) AFV40D (Dual Redundant Field Control Unit) Model Code

Model format: AFV40D - [suffix code 1] [suffix code 2] [suffix code 3] [suffix code 4] [suffix code 5] [suffix code 6] [suffix code 7]+Option code Core difference: AFV40D requires dual redundancy configuration, suffix code 2 is fixed as "4" (dual redundant Vnet/IP+dual power supply), suffix code 3 is fixed as "2/4" (dual redundant ESB bus), and option code only supports dual redundant node units (such as/ - D2F, dual redundant ESB node units).

Software requirements and compatible systems

software license

AFV40S/AFV40D require separate purchase of software license, core dependencies:

VP6F1700 Field Control Station Control Function License (GS33J15C10-01EN): Supports the control logic operation of CP461/CP471 processors.

VP6F3100 Project I/O License (GS33J15A10-01EN): Supports I/O node expansion and signal acquisition for FIO systems.

Event Sequence Manager (SEM) compatibility

If SEM functions (event collection, timestamp recording) are required, hardware conditions must be met (such as supporting high-precision time synchronization), please refer to the document "GS33J30D10-01EN" for details.

system compatibility

Only compatible with Yokogawa CENTUM VP integrated production control system, supporting R6.01 and above versions, with CP471 processor requiring R6.05 and above versions; Seamless integration with FIO system, optical ESB bus relay module (ANT401/ANT411), HKU compatible cabinet (ACUKT1, etc.).

Attachments and related products

Standard Appendix

Factory standard: Cabinet door filter (model T9070CB, quantity 2), used to filter the dust in the cabinet inlet air, needs to be replaced regularly to ensure heat dissipation effect.

Related Products

Cabinet Connection Kit: AKT211, used for HK bus or power connection between multiple AFV40 cabinets.

Cabinet side panel: ACB2P, 2 pieces per cabinet (1 on each side) are required for cabinet side protection and need to be ordered separately.

ESB bus cable: YCB301, pre wired in the cabinet already included, additional configuration is required for the connection between ANB10 and ANT10U.


Key application precautions

Effectiveness of redundant configuration

The dual redundancy function of AFV40D must ensure that the "power supply, processor, and ESB bus module" are all of the same model and installed in designated redundancy slots, otherwise automatic fault switching cannot be achieved.

Explosion proof environment use

If used in potentially explosive environments (such as Zone 2), select the/ATDOC option code, obtain the explosion-proof manual, and ensure that the cabinet and node units comply with ATEX/IECEX certification requirements.

Maintenance and replacement

The replacement of processor modules (CP461 → CP471) is only allowed to be operated by authorized engineers from Yokogawa. User initiated replacement will result in the warranty being invalidated; The battery needs to be replaced every 3-5 years to avoid data loss during power outages.

  • WESTINGHOUSE 5X00070G01 Ovation Module
  • Westinghouse 5X00605G01 Control Module
  • WESTINGHOUSE 5X00241G02 Ovation System Communication Module
  • WESTINGHOUSE 5X00226G03 Ovation Module
  • Westinghouse ZX345Q Control System
  • WESTINGHOUSE ST24B3 Temperature Transmitter
  • WESTINGHOUSE AID-1 Industrial Keyboard
  • Westinghouse 5X00241G01 Control Module
  • WESTINGHOUSE 5X00226G02 Ovation Controller Base Module
  • WESTINGHOUSE 5X00119G01 Ovation Module
  • Westinghouse 5X00105G14 Control Module
  • WESTINGHOUSE 5X00105G01 Ovation System Base Module
  • WESTINGHOUSE 5X00058G01 Ovation Controller
  • Westinghouse 5A26391H24 Control Module
  • WESTINGHOUSE 4D33942G01 Ovation I/O Communication Module
  • WESTINGHOUSE 3A99158G01 Ovation I/O Module
  • WESTINGHOUSE 3A99200G01 Control Module
  • WESTINGHOUSE 3A99132G02 Ovation System Power Module
  • WESTINGHOUSE 3A99132G01 Ovation Interface Module
  • WESTINGHOUSE 1X00416H01 Control Module
  • WESTINGHOUSE 1X00024H01 Ovation System Interface Module
  • WESTINGHOUSE 1C31227G02 Ovation I/O Module
  • Westinghouse 1C31194G03 Control Module
  • WESTINGHOUSE 1C31194G02 Ovation Controller Module
  • WESTINGHOUSE 1C31194G01 Ovation Controller Module
  • WESTINGHOUSE 1C31189G01 Control I O Module
  • WESTINGHOUSE 1C31179G02 Ovation Processor Module
  • WESTINGHOUSE 1C31164G02 Ovation Relay Output Module
  • Westinghouse 1C31161G02 RTD Input Module
  • WESTINGHOUSE 1C31150G01 Ovation DCS I/O Controller Module
  • WESTINGHOUSE 1C31113G02 Ovation Analog Input Module
  • WESTINGHOUSE 1C31129G03 Control Module
  • WESTINGHOUSE 1C31122G01 Process Controller | Ovation DCS Control Module
  • WESTINGHOUSE 1C31113G02 Ovation Analog Input Module
  • WESTINGHOUSE 1B30023H02 Control Module
  • WESTINGHOUSE 1B30035H01 Turbine Control System Module
  • WIDAP UFW30.156 6K8J175W0823 Power Resistor Technical Profile
  • WINGREEN IPB PCB V2.0_A01 03ZSTL6-00-201-RS Industrial Power Board
  • WINGREEN CANopen_ADAPTER V5.0_A01 03ZSTI-00-501-RS Module
  • WINGREEN PUIM V2.0 034STM4-00-200-RS Power Interface Module
  • WINGREEN DUDT_DETECTION_V2.0_A01 03ZSTJ0-00-201-RS Detection Control Board
  • WINGREEN LAIB V3.0_A00 034STN1-00-300-RS Embedded Industrial Motherboard
  • WINGREEN FAN_DETECTION V1.0_A05 03ZSTJ3-00-105Fan Monitoring Module
  • WINGREEN LAIB V3.0_A00 034STN1-01-300-RS Interface Board
  • WINGREEN ATKB_V5.0_A01 03ZSTI4-00-501 Industrial Control Keyboard Module
  • WINGREEN ATKB_V5.0_A01 03ZSTI4-01-501 Industrial Motherboard | Embedded Control Board
  • WINGREEN FPB_V3.0_A01 03ZSTJ1-00-301-RS Fieldbus Processor
  • WINGREEN DSPB_V4.0_A02 03ZSTI7-00-402-RS Digital Processing Board
  • WOHNER 31110 Cylindrical Fuse Holder
  • WOODHEAD APPLICOM PCI4000 PCI Communication Card Industrial DeviceNet CAN Bus Interface
  • Woodward 8440-1706 Industrial Control System Module
  • Woodward 8440-2052 H Synchronizer Load Share Module
  • Baldor KPD-TS12C-30E 12.1" Color TFT Touch Screen Ethernet HMI
  • Baldor KPD-TS10C-30E 10" Color TFT Touch Screen Operator Interface with Serial and Ethernet Interfaces
  • Baldor KPD-TS05C-30E 5.6" Color TFT Touch Screen with Serial and Ethernet Interface
  • Baldor KPD-TS05C-30 5.6 Inch Color TFT Touch Screen Serial Interface
  • Baldor KPD-TS05M-10 5.6" Monochrome Touch Screen Serial Interface HMI
  • Baldor KPD-TS03M-10 Monochrome Touch Screen Operator Interface
  • Baldor KPD-KG420-30 4x20 Graphic Display with 12 Function Keys - Serial Interface
  • Baldor KPD-KG420-20 4x20 Character Graphic Display Serial Interface
  • WOODWARD EASYGEN-3200-5 8440-1992 A Genset Controller
  • WOODWARD PEAK200-HVAC 8200-1501 C Version | Industrial Building Automation Controller
  • Woodward 8440-2052 easyGEN-3200 Genset Control Power Management
  • Woodward 8237-1246 + 5437-1119 Control System Module
  • WOODWARD SPM-D11 8440-1703 Overspeed Protection System Module
  • WOODWARD 8237-1369 Governor Control Module
  • Woodward 8237-1600 Digital Control Module
  • WOODWARD BUM60-1224-54-B-001-VC-A0-0093-0013-G003-0000 3522-1004 Industrial Control Module
  • WOODWARD 8200-1302 Genset Controller
  • Woodward 8901-457 Speed Control Module
  • WOODWARD 5501-465 Control Module
  • Woodward 5448-890 SPM-D10 Digital Control Module
  • WOODWARD 5437-1067A Turbine Governor Actuator
  • Woodward 8440-1666 B Digital Control Module
  • WOODWARD 8440-1706 A SPM-D11 Synchronous Phase Modulator Module
  • WOODWARD 5466-425 Programmable Automation Controller (PAC)
  • WOODWARD 5466-318- Industrial Gas Turbine Control Module
  • WOODWARD 5453-277 Digital Control Module
  • WOODWARD 5453-203 Digital Governor Control Module
  • WOODWARD 9907-1106 Pressure Converter
  • WOODWARD 5233-2089 Professional Industrial Control System Module
  • WOODWARD 9907-147 Power outage tripping overspeed protection system
  • WOODWARD 8237-1600 Digital Speed Control System
  • WOODWARD 8402-319 8402-119 microprocessor speed controller
  • Woodward 8237-1006 Digital Governor
  • WOODWARD 5501-471 Communication Module
  • WOODWARD 5466-258 Input/Output Module
  • WOODWARD 5501-467 Multi Protocol Communication Gateway and I/O Expansion Module
  • WOODWARD 5501-470 Digital microprocessor controller module
  • WOODWARD 9907-1200 Digital Governor
  • WOODWARD 8444-1067 High Performance Digital Microprocessor Controller Module
  • WOODWARD 8446-1019 Integrated Gas Engine Electronic Control System
  • WOODWARD 9907-162 Digital Engine Governor
  • WOODWARD 5466-316 Simulation Combination Module
  • WOODWARD 5464-414 Digital Speaker Sensor Module
  • XANTREX XFR40-70 DC power supply
  • XP POWER F8B6A4A6A6 power module
  • XP POWER F8B6D4A3G3 power supply
  • XYCOM XVME-674 VMEbus Single Slot CPU/Processor Module
  • XYCOM XVME-957 Circuit Board
  • XYCOM XVME-976 PC board computer
  • XYCOM XVME-530 8-Channel Isolated Analog Output Module
  • XYCOM Proto XVME-085 Bus Module
  • YAMAHA RCX40 4-AXIS ROBOT CONTROLLER
  • YAMATAKE EST0240Z05WBX00 touch screen display
  • YAMATAKE HD-CAOBS00 flowmeter
  • HIMA X-COM 01 Communication Module
  • HIMA HIMax X-AO 16 01 Analog Output Module
  • HIMA X-AI3251 Analog Input Module
  • HIMA X-DO3251 Digital Output Module
  • HIMA X-DI3202 Digital Input Module
  • HIMA X-DI6451 Digital Input Module
  • YASKAWA USAHEM-02-TE53 AC servo motor
  • Yaskawa JZNC-XPP02B Teaching Programmer
  • YASKAWA CACR-SR07BE12M servo drive
  • YASKAWA JAMSC-B2732V Advanced Drive Controller
  • YASKAWA JGSM-06 Controller
  • YASKAWA PCCF-H64MS 64MB Industrial Memory Module
  • YASKAWA CACR-02-TE1K servo driver
  • YASKAWA JAPMC-IQ2303 Controller Module
  • YASKAWA DDSCR-R84H Controller
  • YASKAWA JANCD-XTU01B circuit board
  • YASKAWA JANCD-XIO01 High Performance PC Input/Output (I/O) Board
  • YASKAWA JACP-317800 servo drive
  • XYCOM 120974 - Circuit Board
  • XYCOM 99298-200 - PC Control Card 99207A-001
  • XYCOM 99298-266 - CPU Board
  • XYCOM 99311-001 - Screen Display Ribbon Cable