Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

HIMatrix F30 01 Safety-Related Controller

来源: | 作者:FAN | 发布时间 :2025-09-22 | 314 次浏览: | Share:

HIMatrix F30 01 Safety-Related Controller

Product Description

The safety-related F30 controller is a compact system in a metal housing with 20 digital inputs and 8 digital outputs.
The controller is available in various model variants for SILworX and ELOP II Factory.
The device is suitable for mounting in Ex-zone 2.
The device is TÜV-certified for safety-related applications up to SIL 3 (IEC 61508, IEC 61511 and IEC 62061), Cat. 4 and PL e (EN ISO 13849-1) and SIL 4 (EN 50126, EN 50128 and EN 50129).
Further safety standards, application standards and test standards are specified in the certificates available on the HIMA website.

Safety Function  

The controller is equipped with safety-related digital inputs and outputs.
Safety-Related Digital Inputs
The controller is equipped with 20 digital inputs. The state (HIGH, LOW) of each input is signaled by an individual LED.
Mechanical contacts without own power supply or signal power source can be connected to the inputs.
Potential-free mechanical contacts without own power supply are fed via an internal short circuit-proof 24 V power source (LS+). Each of them supply a group of 4 mechanical contacts.
With signal voltage sources, the corresponding ground must be connected to the input (L-)
For the external wiring and the connection of sensors, apply the de-energized-to-trip principle.
Thus, if a fault occurs, the input signals adopt a de-energized, safe state (low level).
If an external wire is not monitored, an open-circuit is considered as safe low level.


Reaction in the Event of a Fault

If the device detects a fault on a digital input, the user program processes a low level in accordance with the de-energized to trip principle.
The device activates the FAULT LED.
In addition to the channel signal value, the user program must also consider the corresponding error code.  
The error code allows the user to configure additional fault reactions in the user program.


Line Control

Line control is used to detect short-circuits or open-circuits and can be configured for the F30 system, e.g., on EMERGENCY STOP inputs complying with Cat. 4 and PL e in accordance with EN ISO 13849-1.
To this end, connect the digital outputs DO 1 through DO 8 of the system to the digital inputs DI of the same system as follows:

The controller pulses the digital outputs to detect short-circuits and open-circuits on the lines connected to the digital inputs. 

To do so, configure the Value [BOOL] -> system variable in SILworX or the DO[0x].Value system signal in ELOP II Factory. 

The variables for the pulsed outputs must begin with channel 1 and reside in direct sequence, one after the other.

If the following faults occur, the FAULT LED located on the front plate of the controller blinks,the inputs are set to low level and an (evaluable) error code is created:
 Cross-circuit between two parallel wires.
 Invalid connections of two lines (e.g., DO 2 to DI 3),
 Earth fault on one wire (with earthed ground only).
 Open-circuit or open contacts, i.e., including when one of the two EMERGENCY STOP
switches mentioned above has been engaged, the FAULT LED blinks and the error code is created. 

Equipment, Scope of Delivery

The following table specifies the available controller variants:
F30 01:Controller (20 digital inputs, 8 digital outputs), Operating temperature: 0...+60 °C, for ELOP II Factory programming tool.
F30 011 (-20 °C) :Controller (20 digital inputs, 8 digital outputs), Operating temperature: -20...+60 °C, for ELOP II Factory programming tool
F30 014:Controller (20 digital inputs, 8 digital outputs), Operating temperature: -25...+70 °C (temperature class T1), Vibration and shock tested according to EN 50125-3 and EN 50155,
class 1B according to IEC 61373, for ELOP II Factory programming tool
F30 01 SILworX:Controller (20 digital inputs, 8 digital outputs), Operating temperature: 0...+60 °C, for SILworX programming tool
F30 011 SILworX (-20 °C):Controller (20 digital inputs, 8 digital outputs), Operating temperature: -20...+60 °C, for SILworX programming tool
F30 014 SILworX:Controller (20 digital inputs, 8 digital outputs), Operating temperature: -25...+70 °C (temperature class T1), Vibration and shock tested according to EN 50125-3 and EN 50155, class 1B according to IEC 61373, for SILworX programming tool


Type Label
The type plate contains the following details:
 Product name
 Bar code (1D or 2D code)
 Part no.
 Production year
 Hardware revision index (HW Rev.)
 Firmware revision index (FW Rev.)
 Operating voltage
 Mark of conformity

Mounting the F30 in Zone 2
(EC Directive 94/9/EC, ATEX)
The controller is suitable for mounting in zone 2.  Refer to the corresponding declaration of conformity available on the HIMA website.
When mounting the device, observe the special conditions specified in the following section.
Specific Conditions X
1. Mount the HIMatrix F30 controller in an enclosure that meets the EN 60079-15 requirements and achieves a type of protection of at least IP54, in accordance with EN 60529. Provide the enclosure with the following label:
Work is only permitted in the de-energized state Exception:
If a potentially explosive atmosphere has been precluded, work can also performed when the controller is under voltage.
2. The enclosure in use must be able to safely dissipate the generated heat. Depending on the output load and supply voltage, the HIMatrix F30 has a power dissipation ranging between 12 W and 33 W.
3. Protect the HIMatrix F30 with a 10 A time-lag fuse.
The 24 VDC power must come from a power supply unit with safe isolation. Use power supply units of type PELV or SELV only.
4. Applicable standards:
VDE 0170/0171 Part 16, DIN EN 60079-15: 2004-5
VDE 0165 Part 1,   DIN EN 60079-14: 1998-08


Configuration with SILworX
In the Hardware Editor, the controller is represented like a base plate equipped with the  following modules:
 Processor module (CPU)
 Communication module (COM)
 Input module (DI 20)
 Output module (DO 8)
Double-click the module to open the Detail View with the corresponding tabs. The tabs are used to assign the global variables configured in the user program to the system variables.
Parameters and Error Codes for the Inputs and Outputs
The following tables specify the system parameters that can be read and set for the inputs and outputs, including the corresponding error codes.
In the user program, the error codes can be read using the variables assigned within the logic.
The error codes can also be displayed in SILworX.

Configuration with ELOP II Factory
Configuring the Inputs and Outputs
The signals previously defined in the Signal Editor (Hardware Management) are assigned to the individual channels (inputs and outputs) using ELOP II Factory. Refer to the system manual for compact systems or the online help for more details.
The following chapter describes the system signals used for assigning signals in the controller.
Signals and Error Codes for the Inputs and Outputs
The following tables specify the system signals that can be read and set for the inputs and outputs, including the corresponding error codes.
In the user program, the error codes can be read using the signals assigned within the logic.
The error codes can also be displayed in ELOP II Factory.


Operation
The controller F30 is ready for operation. No specific monitoring is required for the controller.
Handling
Handling of the controller during operation is not required.
Diagnosis
A first diagnosis results from evaluating the LEDs, see Chapter 3.4.1.
The device diagnostic history can also be read using the programming tool.
Maintenance
No maintenance measures are required during normal operation.
If a failure occurs, the defective module or device must be replaced with a module or device of the same type or with a replacement model approved by HIMA.
Only the manufacturer is authorized to repair the device/module.
Faults
If the test harnesses detect safety-critical faults, the module enters the STOP_INVALID state and will remain in this state. This means that the input signals are no longer processed by the device and the outputs switch to the de-energized, safe state. The evaluation of diagnostics provides information on the fault cause.
Maintenance Measures
The following measures are required for the device:
 Loading the operating system, if a new version is required
 Executing the proof test

Loading the Operating System

HIMA is continuously improving the operating system of the devices.
HIMA recommends to use system downtimes to load a current version of the operating system into the devices.
Refer to the release list to check the consequences of the new operation system version on the system!
The operating system is loaded using the programming tool.
Prior to loading the operating system, the device must be in STOP (displayed in the programming tool). Otherwise, stop the device.
For more information, refer to the programming tool documentation.
Proof Test
HIMatrix devices and modules must be subjected to a proof test in intervals of 10 years.
Decommissioning
Remove the supply voltage to decommission the device. Afterwards pull out the pluggable screw terminal connector blocks for inputs and outputs and the Ethernet cables. 
Transport
To avoid mechanical damage, HIMatrix components must be transported in packaging.
Always store HIMatrix components in their original product packaging. This packaging also provides protection against electrostatic discharge. Note that the product packaging alone is not suitable for transport.
Disposal
Industrial customers are responsible for correctly disposing of decommissioned HIMatrix hardware. Upon request, a disposal agreement can be arranged with HIMA.
All materials must be disposed of in an ecologically sound manner. 

image.png

  • WESTINGHOUSE 5X00070G01 Ovation Module
  • Westinghouse 5X00605G01 Control Module
  • WESTINGHOUSE 5X00241G02 Ovation System Communication Module
  • WESTINGHOUSE 5X00226G03 Ovation Module
  • Westinghouse ZX345Q Control System
  • WESTINGHOUSE ST24B3 Temperature Transmitter
  • WESTINGHOUSE AID-1 Industrial Keyboard
  • Westinghouse 5X00241G01 Control Module
  • WESTINGHOUSE 5X00226G02 Ovation Controller Base Module
  • WESTINGHOUSE 5X00119G01 Ovation Module
  • Westinghouse 5X00105G14 Control Module
  • WESTINGHOUSE 5X00105G01 Ovation System Base Module
  • WESTINGHOUSE 5X00058G01 Ovation Controller
  • Westinghouse 5A26391H24 Control Module
  • WESTINGHOUSE 4D33942G01 Ovation I/O Communication Module
  • WESTINGHOUSE 3A99158G01 Ovation I/O Module
  • WESTINGHOUSE 3A99200G01 Control Module
  • WESTINGHOUSE 3A99132G02 Ovation System Power Module
  • WESTINGHOUSE 3A99132G01 Ovation Interface Module
  • WESTINGHOUSE 1X00416H01 Control Module
  • WESTINGHOUSE 1X00024H01 Ovation System Interface Module
  • WESTINGHOUSE 1C31227G02 Ovation I/O Module
  • Westinghouse 1C31194G03 Control Module
  • WESTINGHOUSE 1C31194G02 Ovation Controller Module
  • WESTINGHOUSE 1C31194G01 Ovation Controller Module
  • WESTINGHOUSE 1C31189G01 Control I O Module
  • WESTINGHOUSE 1C31179G02 Ovation Processor Module
  • WESTINGHOUSE 1C31164G02 Ovation Relay Output Module
  • Westinghouse 1C31161G02 RTD Input Module
  • WESTINGHOUSE 1C31150G01 Ovation DCS I/O Controller Module
  • WESTINGHOUSE 1C31113G02 Ovation Analog Input Module
  • WESTINGHOUSE 1C31129G03 Control Module
  • WESTINGHOUSE 1C31122G01 Process Controller | Ovation DCS Control Module
  • WESTINGHOUSE 1C31113G02 Ovation Analog Input Module
  • WESTINGHOUSE 1B30023H02 Control Module
  • WESTINGHOUSE 1B30035H01 Turbine Control System Module
  • WIDAP UFW30.156 6K8J175W0823 Power Resistor Technical Profile
  • WINGREEN IPB PCB V2.0_A01 03ZSTL6-00-201-RS Industrial Power Board
  • WINGREEN CANopen_ADAPTER V5.0_A01 03ZSTI-00-501-RS Module
  • WINGREEN PUIM V2.0 034STM4-00-200-RS Power Interface Module
  • WINGREEN DUDT_DETECTION_V2.0_A01 03ZSTJ0-00-201-RS Detection Control Board
  • WINGREEN LAIB V3.0_A00 034STN1-00-300-RS Embedded Industrial Motherboard
  • WINGREEN FAN_DETECTION V1.0_A05 03ZSTJ3-00-105Fan Monitoring Module
  • WINGREEN LAIB V3.0_A00 034STN1-01-300-RS Interface Board
  • WINGREEN ATKB_V5.0_A01 03ZSTI4-00-501 Industrial Control Keyboard Module
  • WINGREEN ATKB_V5.0_A01 03ZSTI4-01-501 Industrial Motherboard | Embedded Control Board
  • WINGREEN FPB_V3.0_A01 03ZSTJ1-00-301-RS Fieldbus Processor
  • WINGREEN DSPB_V4.0_A02 03ZSTI7-00-402-RS Digital Processing Board
  • WOHNER 31110 Cylindrical Fuse Holder
  • WOODHEAD APPLICOM PCI4000 PCI Communication Card Industrial DeviceNet CAN Bus Interface
  • Woodward 8440-1706 Industrial Control System Module
  • Woodward 8440-2052 H Synchronizer Load Share Module
  • Baldor KPD-TS12C-30E 12.1" Color TFT Touch Screen Ethernet HMI
  • Baldor KPD-TS10C-30E 10" Color TFT Touch Screen Operator Interface with Serial and Ethernet Interfaces
  • Baldor KPD-TS05C-30E 5.6" Color TFT Touch Screen with Serial and Ethernet Interface
  • Baldor KPD-TS05C-30 5.6 Inch Color TFT Touch Screen Serial Interface
  • Baldor KPD-TS05M-10 5.6" Monochrome Touch Screen Serial Interface HMI
  • Baldor KPD-TS03M-10 Monochrome Touch Screen Operator Interface
  • Baldor KPD-KG420-30 4x20 Graphic Display with 12 Function Keys - Serial Interface
  • Baldor KPD-KG420-20 4x20 Character Graphic Display Serial Interface
  • WOODWARD EASYGEN-3200-5 8440-1992 A Genset Controller
  • WOODWARD PEAK200-HVAC 8200-1501 C Version | Industrial Building Automation Controller
  • Woodward 8440-2052 easyGEN-3200 Genset Control Power Management
  • Woodward 8237-1246 + 5437-1119 Control System Module
  • WOODWARD SPM-D11 8440-1703 Overspeed Protection System Module
  • WOODWARD 8237-1369 Governor Control Module
  • Woodward 8237-1600 Digital Control Module
  • WOODWARD BUM60-1224-54-B-001-VC-A0-0093-0013-G003-0000 3522-1004 Industrial Control Module
  • WOODWARD 8200-1302 Genset Controller
  • Woodward 8901-457 Speed Control Module
  • WOODWARD 5501-465 Control Module
  • Woodward 5448-890 SPM-D10 Digital Control Module
  • WOODWARD 5437-1067A Turbine Governor Actuator
  • Woodward 8440-1666 B Digital Control Module
  • WOODWARD 8440-1706 A SPM-D11 Synchronous Phase Modulator Module
  • WOODWARD 5466-425 Programmable Automation Controller (PAC)
  • WOODWARD 5466-318- Industrial Gas Turbine Control Module
  • WOODWARD 5453-277 Digital Control Module
  • WOODWARD 5453-203 Digital Governor Control Module
  • WOODWARD 9907-1106 Pressure Converter
  • WOODWARD 5233-2089 Professional Industrial Control System Module
  • WOODWARD 9907-147 Power outage tripping overspeed protection system
  • WOODWARD 8237-1600 Digital Speed Control System
  • WOODWARD 8402-319 8402-119 microprocessor speed controller
  • Woodward 8237-1006 Digital Governor
  • WOODWARD 5501-471 Communication Module
  • WOODWARD 5466-258 Input/Output Module
  • WOODWARD 5501-467 Multi Protocol Communication Gateway and I/O Expansion Module
  • WOODWARD 5501-470 Digital microprocessor controller module
  • WOODWARD 9907-1200 Digital Governor
  • WOODWARD 8444-1067 High Performance Digital Microprocessor Controller Module
  • WOODWARD 8446-1019 Integrated Gas Engine Electronic Control System
  • WOODWARD 9907-162 Digital Engine Governor
  • WOODWARD 5466-316 Simulation Combination Module
  • WOODWARD 5464-414 Digital Speaker Sensor Module
  • XANTREX XFR40-70 DC power supply
  • XP POWER F8B6A4A6A6 power module
  • XP POWER F8B6D4A3G3 power supply
  • XYCOM XVME-674 VMEbus Single Slot CPU/Processor Module
  • XYCOM XVME-957 Circuit Board
  • XYCOM XVME-976 PC board computer
  • XYCOM XVME-530 8-Channel Isolated Analog Output Module
  • XYCOM Proto XVME-085 Bus Module
  • YAMAHA RCX40 4-AXIS ROBOT CONTROLLER
  • YAMATAKE EST0240Z05WBX00 touch screen display
  • YAMATAKE HD-CAOBS00 flowmeter
  • HIMA X-COM 01 Communication Module
  • HIMA HIMax X-AO 16 01 Analog Output Module
  • HIMA X-AI3251 Analog Input Module
  • HIMA X-DO3251 Digital Output Module
  • HIMA X-DI3202 Digital Input Module
  • HIMA X-DI6451 Digital Input Module
  • YASKAWA USAHEM-02-TE53 AC servo motor
  • Yaskawa JZNC-XPP02B Teaching Programmer
  • YASKAWA CACR-SR07BE12M servo drive
  • YASKAWA JAMSC-B2732V Advanced Drive Controller
  • YASKAWA JGSM-06 Controller
  • YASKAWA PCCF-H64MS 64MB Industrial Memory Module
  • YASKAWA CACR-02-TE1K servo driver
  • YASKAWA JAPMC-IQ2303 Controller Module
  • YASKAWA DDSCR-R84H Controller
  • YASKAWA JANCD-XTU01B circuit board
  • YASKAWA JANCD-XIO01 High Performance PC Input/Output (I/O) Board
  • YASKAWA JACP-317800 servo drive
  • XYCOM 120974 - Circuit Board
  • XYCOM 99298-200 - PC Control Card 99207A-001
  • XYCOM 99298-266 - CPU Board
  • XYCOM 99311-001 - Screen Display Ribbon Cable