Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

TEKTRONIX 3 Series Mixed Domain Oscilloscope MDO32 and MDO34

来源: | 作者:FAN | 发布时间 :2025-11-20 | 266 次浏览: | Share:


TEKTRONIX 3 series mixed domain oscilloscopes MDO32 and MDO34

Overview and Scope of Application

The specification and performance verification manual for the Tektronix 3 series hybrid domain oscilloscope (with 2 channels for MDO32 and 4 channels for MDO34) covers three major modules: hardware parameters (analog bandwidth of 100MHz-1GHz, maximum sampling rate of 5GS/s, and 16 optional digital channels), multi domain functionality (oscilloscope+spectrum analyzer+arbitrary function generator+digital voltmeter), and performance verification process (20+tests including input impedance, DC balance, analog bandwidth, etc.). The key indicator range is clearly defined (such as maximum input voltage of 300VRMS, display average noise level ≤ -109dBm/Hz), and standardized testing steps are provided (including required equipment list, wiring diagram, data recording table), while emphasizing safety specifications (CAT II). Provide complete technical guidance for instrument calibration, troubleshooting, and compliance verification, including installation category and grounding requirements.

Model differences and core parameters

Model Features MDO32 (2 channels) MDO34 (4 channels) Remarks

Analog bandwidth 100MHz-1GHz 100MHz-1GHz model sampling rate 5GS/s, other 2.5GS/s

Digital channel 16 channels (3-MSO option) 16 channels (3-MSO option) input capacitor 8pF, minimum signal swing 500mVpp

Spectrum analysis 9kHz-1GHz (standard)/3GHz (3-SA3 option) 9kHz-1GHz (standard)/3GHz (3-SA3 option) Display average noise level ≤ -109dBm/Hz

AFG function 1 channel (3-AFG option) 1 channel (3-AFG option) Output waveform includes 13 types such as sine wave, square wave, pulse, etc

Size and weight 370 × 252 × 148.6mm, 5.26kg (1GHz) 370 × 252 × 148.6mm, 5.31kg (1GHz) requires 50.8mm heat dissipation space on the right and rear


Detailed explanation of core hardware specifications

1. Key parameters of simulation channel

Parameter Category Specification Range Remarks

Under the bandwidth of 100MHz/200MHz/350MHz/500MHz/1GHz 1mV/div, the bandwidth of the 1GHz model has been reduced to 150MHz

Sampling rate of 1-5GS/s, maximum 5GS/s when 1-2 channels are activated, and maximum 2.5GS/s when 3-4 channels are activated

Input impedance 1M Ω (± 1%) or 50 Ω (± 1%) 1M Ω input capacitor 13pF ± 2pF

Maximum input voltage 1M Ω: 300VRMS (CAT II); 50 Ω: 5VRMS (peak ≤± 20V) 1M Ω drops to 5VRMS above 450MHz

DC gain accuracy ± 1.5% (5mV/div and above), ± 2.0% (2mV/div), ± 2.5% (1mV/div), with an additional decrease of 0.1% per ℃ above 30 ℃

2. Digital channel (3-MSO option) parameters

Parameter specifications

Number of channels 16 (D0-D15)

Input resistance 101k Ω (typical value)

Input capacitance 8pF (typical value)

Threshold range -15V~+25V

Threshold accuracy ± [130mV+3% x threshold setting] (SPC needs to be performed)

Minimum detectable pulse 2.0ns (requires P6316 probe)

Skew 500ps between channels (typical value)

3. Parameters of spectrum analyzer

Parameter specifications

Frequency range 9kHz-1GHz (standard); 9kHz-3GHz (3-SA3 option)

Resolution bandwidth (RBW) 20Hz-150MHz (1-2-3-5 sequence adjustment)

Display average noise level (DANL) 9kHz-50kHz: ≤ -109dBm/Hz; 5MHz-2GHz:≤-136dBm/Hz

Stray response second harmonic ≤ -55dBc; 3rd harmonic ≤ -53dBc

Phase noise (1GHz CW) 10kHz offset: ≤ -81dBc/Hz; 1MHz offset: ≤ -118dBc/Hz

4. Parameters of any function generator (3-AFG option)

Parameter specifications

13 types of output waveforms including sine wave, square wave, pulse, and ramp

Frequency range: sine wave 0.1Hz-50MHz; Square wave 0.1Hz-25MHz

Range of amplitude 50 Ω load: 10mVpp-2.5Vpp; High resistance load: 20mVpp-5Vpp

DC offset ± 1.25V (50 Ω); ± 2.5V (high resistance)

Rise/fall time 5ns (10% -90%, square wave)

Distortion sine wave ≤ 1% (50 Ω, 1kHz)

image.png

Performance verification process

1. Verify the prerequisites

The instrument needs to be preheated in an environment of 18 ℃ -28 ℃ for at least 10 minutes;

Perform signal path compensation (SPC) (path: Utility → Calibration → Run SPC), if the temperature change exceeds 5 ℃, it needs to be re executed;

The oscilloscope and testing equipment need to be connected to the same AC power circuit (to avoid errors caused by ground offset).

2. Core test items and steps (example)

Qualification criteria for key steps of testing equipment in testing projects

Input impedance (1M Ω/50 Ω) DC voltage source, impedance measuring instrument 1. Connect the voltage source to channel 1; 2. Set the vertical gear to 10mV/div/100mV/div; 3. Measure impedance values of 1M Ω: 990k Ω -1.01M Ω; 50 Ω: 49.5 Ω -50.5 Ω

DC balanced 50 Ω terminal load 1. Channel connected to 50 Ω terminal; 2. Set the vertical gear to 1mV/div-1V/div; 3. Convert the measurement mean to divisions 1mV/div (50 Ω): ± 0.5div; 2mV/div and above: ± 0.2div

Analog bandwidth sine wave generator 1. Input 10MHz signal (8div amplitude); 2. Adjust to the maximum bandwidth frequency; 3. Calculate the gain (Vbw pp/Vin pp) with a gain ≥ 0.707 (-3dB point)

Random noise free (internal noise) 1. Disconnect all inputs; 2. Set up a 50 Ω terminal with full bandwidth; 3. Measure AC RMS noise at 100mV/div level: 1GHz model ≤ 3.1mV; 100MHz model ≤ 2.85mV

Digital threshold accuracy DC voltage source, P6316 probe 1. Connect the probe to the voltage source; 2. Set a threshold of 0V/4V; 3. Record Vs - (high → low) and Vs+(low → high) 0V: ± 0.1V; 4V: 3.78V-4.22V

3. List of Testing Equipment (Table 3)

Minimum requirements for device name, example model

DC voltage source 3mV-100V, ± 0.1% accuracy Fluke 9500B (equipped with 9530 module)

Sine wave generator 9kHz-3GHz, ± 4% amplitude accuracy Anritsu MG3690C

Power meter+sensor -30dBm -+10dBm Rhode&Schwarz NRX (with NRP-Z98)

Frequency counter 0.1Hz-50MHz, 5ppm accuracy Tektronix FCA3000

Digital Multimeter (DMM) DC ± 0.1%, AC RMS ± 0.2% Tektronix DMM4040


Safety and Maintenance

1. Safety regulations

Grounding requirements: A 3-pin power cord must be used, and the grounding conductor must be reliably connected to the ground. Disconnecting the grounding is prohibited;

Input restrictions: Maximum 300VRMS (CAT II) for 1M Ω channel, maximum 5VRMS for 50 Ω channel, overvoltage may damage terminal resistance;

Operation taboos: Do not plug or unplug probes/cables with power on, do not use in damp (>90% RH) or explosive environments, and do not operate after removing the instrument cover.

2. Maintenance and Calibration

Firmware upgrade: 1 Download firmware. img from the official website to USB; 2. Turn off the oscilloscope and plug it into a USB port; 3. Automatic upgrade upon startup (power off prohibited);

Calibration cycle: recommended to be 1 year, with a reference frequency error accumulation of ± 10ppm/year (including aging and temperature effects);

Self check and diagnosis: Path: Utility → Self Test. If it fails, it will enter extended diagnosis and can be exited by pressing MENU OFF (it can be temporarily used when the fault does not affect the measurement).

image.png

Key issue

Question 1:3: The simulated bandwidth of the 3 series MDO is related to the vertical gear. What is the actual bandwidth of the 1GHz model at different vertical gears? How to confirm whether the bandwidth is qualified through performance verification?

Answer:

1、 Actual bandwidth of different vertical gears for 1GHz models

The simulated bandwidth of the 1GHz model decays with decreasing vertical gear, and the specific corresponding relationship is as follows:

Vertical gear (Volts/Div) 50 Ω input bandwidth 1M Ω input bandwidth (typical value)

10mV/div - 1V/div DC - 1.0GHz DC - 1.0GHz

5mV/div - 9.98mV/div DC - 500MHz DC - 500MHz

2mV/div - 4.98mV/div DC - 350MHz DC - 350MHz

1mV/div - 1.99mV/div DC - 150MHz DC - 150MHz

2、 Bandwidth performance verification steps (taking 50 Ω input as an example)

Equipment connection: Connect a sine wave generator (such as Fluke 9500B) to oscilloscope channel 1 via a 50 Ω coaxial cable, with the generator output impedance set to 50 Ω;

Oscilloscope settings:

Reset according to Default Setup;

Set the Acquisition Mode to Sample;

Add peak to peak measurement (Measure → Amplitude → Peak to Peak → Add);

Channel 1 setting: Termination=50 Ω, Vertical Scale=corresponding test gear (such as 1mV/div);

Signal input: The generator outputs a 10MHz sine wave, adjust the amplitude to display 8div on the screen (such as outputting 8mVpp at 1mV/div level), and record the peak value (Vin pp) at this time;

Bandwidth test: Adjust the generator frequency to the maximum bandwidth corresponding to this gear (e.g. 1mV/div corresponds to 150MHz), and record the peak value (Vbw pp) at this time;

Qualification judgment: Calculate the gain as Vbw-pp/Vin pp. If the gain is ≥ 0.707 (-3dB point), the bandwidth is qualified.


Question 2: How to test the threshold accuracy of the digital channel (3-MSO option) of the 3 series MDO? What are the key operational details to pay attention to during testing?

Answer:

1、 Testing steps for threshold accuracy of digital channels

Equipment preparation: DC voltage source (such as Fluke 9500B), P6316 digital probe, BNC-to-0.1 inch pin adapter;

Probe connection: P6316 probe Group 1 is connected to a voltage source, and an adapter is used to match the interface;

Oscilloscope settings:

Reset according to Default Setup;

Activate the digital channel (D15-D0 button → Turn All On);

Set digital channel threshold (such as 0V or 4V): D15-D0 menu → Thresholds → Enter target value;

Trigger setting: Trigger → Source=Target digital channel (such as D0), Slope=Rising/Falling;

Threshold measurement (taking 0V threshold as an example):

Vs - (high to low switching voltage): Set the voltage source to -400mV, gradually increase by 20mV until the channel displays a stable low level (blue), and record the voltage as Vs - at this time;

Vs+(low to high switching voltage): Set the voltage source to+400mV, gradually -20mV until the channel displays a stable high level (green), and record the voltage as Vs+at this time;

Calculate the average threshold: VSAvg=(Vs -+Vs+)/2;

Qualification judgment: The 0V threshold must meet the requirement of * * -0.1V ≤ VSAvg ≤ 0.1V * *, and the 4V threshold must meet the requirement of 3.78V ≤ VSAvg ≤ 4.22V.

2、 Key operational details

Probe grounding: All 8 grounding channels of P6316 probe need to be connected to user grounding to avoid threshold deviation caused by poor grounding;

Voltage stepping: After adjusting the voltage each time, wait for 3 seconds to ensure that the channel state is stable before recording to avoid transient interference;

Trigger slope switching: When measuring Vs -, use the Rising slope, and when measuring Vs+, use the Falling slope to ensure that the trigger point is consistent with the level switching;

Multi channel testing: After testing each channel (such as D0), set its Display to Off and activate the next channel (such as D1) to avoid interference between channels.


Question 3: How to test the display average noise level (DANL) in the spectrum analyzer function of the 3 series MDO? What are the DANL qualification standards for different frequency ranges?

Answer:

1、 DANL testing steps (no input signal, only 50 Ω terminal required)

Equipment connection: oscilloscope RF input connected to 50 Ω feedthrough terminal, no external signal input;

Oscilloscope settings:

Reset according to Default Setup;

Activate RF channel (RF button → On);

Set Trace mode: RF menu → Traces → Average=On, Normal=Off;

Detection mode: Detection Method → Manual → Average;

Reference level: Vertical Settings → Ref Level=-15dBm;

Frequency range setting and measurement:

9kHz-50kHz: Orizontal → Start=9kHz, Stop=50kHz, move the Marker (Multipurpose knob a) to the highest noise point, and record the DANL value;

50kHz-5MHz:Start=50kHz,Stop=5MHz,Center=2.525MHz, Record the highest noise level;

5MHz-2GHz (3-SA3 option): Start=5MHz, Stop=2GHz, Center=1GHz, Span=10MHz, record the highest noise value;

2GHz-3GHz (3-SA3 option): Start=2GHz, Stop=3GHz, Center=2.5GHz, Span=10MHz, record the highest noise value;

Data processing: Ignore stray signals above the noise level (refer to the "residual response" specification) and only record the noise baseline value.

2、 DANL qualification standards for different frequency ranges

Frequency range standard (without 3-SA3) 3-SA3 option typical values (better than standard)

9kHz-50kHz ≤-109dBm/Hz ≤-109dBm/Hz ≤-113dBm/Hz

50kHz-5MHz ≤-126dBm/Hz ≤-126dBm/Hz ≤-130dBm/Hz

5MHz-1GHz ≤-136dBm/Hz ≤-136dBm/Hz ≤-140dBm/Hz

1GHz-2GHz - ≤-136dBm/Hz ≤-140dBm/Hz

2GHz-3GHz - ≤-126dBm/Hz ≤-130dBm/Hz

3、 Testing precautions

Terminal matching: A 50 Ω terminal must be used, otherwise impedance mismatch may cause high noise measurement;

Stray elimination: If there is significantly higher than the base noise at a certain frequency point (such as 1.25GHz, 2.5GHz), the noise values on both sides of the noise should be recorded, rather than the noise itself;

Average time: In the low-frequency range (such as 9kHz-50kHz), wait for 60 seconds to ensure that the average trace is stable before reading.

image.png

  • WESTINGHOUSE 5X00070G01 Ovation Module
  • Westinghouse 5X00605G01 Control Module
  • WESTINGHOUSE 5X00241G02 Ovation System Communication Module
  • WESTINGHOUSE 5X00226G03 Ovation Module
  • Westinghouse ZX345Q Control System
  • WESTINGHOUSE ST24B3 Temperature Transmitter
  • WESTINGHOUSE AID-1 Industrial Keyboard
  • Westinghouse 5X00241G01 Control Module
  • WESTINGHOUSE 5X00226G02 Ovation Controller Base Module
  • WESTINGHOUSE 5X00119G01 Ovation Module
  • Westinghouse 5X00105G14 Control Module
  • WESTINGHOUSE 5X00105G01 Ovation System Base Module
  • WESTINGHOUSE 5X00058G01 Ovation Controller
  • Westinghouse 5A26391H24 Control Module
  • WESTINGHOUSE 4D33942G01 Ovation I/O Communication Module
  • WESTINGHOUSE 3A99158G01 Ovation I/O Module
  • WESTINGHOUSE 3A99200G01 Control Module
  • WESTINGHOUSE 3A99132G02 Ovation System Power Module
  • WESTINGHOUSE 3A99132G01 Ovation Interface Module
  • WESTINGHOUSE 1X00416H01 Control Module
  • WESTINGHOUSE 1X00024H01 Ovation System Interface Module
  • WESTINGHOUSE 1C31227G02 Ovation I/O Module
  • Westinghouse 1C31194G03 Control Module
  • WESTINGHOUSE 1C31194G02 Ovation Controller Module
  • WESTINGHOUSE 1C31194G01 Ovation Controller Module
  • WESTINGHOUSE 1C31189G01 Control I O Module
  • WESTINGHOUSE 1C31179G02 Ovation Processor Module
  • WESTINGHOUSE 1C31164G02 Ovation Relay Output Module
  • Westinghouse 1C31161G02 RTD Input Module
  • WESTINGHOUSE 1C31150G01 Ovation DCS I/O Controller Module
  • WESTINGHOUSE 1C31113G02 Ovation Analog Input Module
  • WESTINGHOUSE 1C31129G03 Control Module
  • WESTINGHOUSE 1C31122G01 Process Controller | Ovation DCS Control Module
  • WESTINGHOUSE 1C31113G02 Ovation Analog Input Module
  • WESTINGHOUSE 1B30023H02 Control Module
  • WESTINGHOUSE 1B30035H01 Turbine Control System Module
  • WIDAP UFW30.156 6K8J175W0823 Power Resistor Technical Profile
  • WINGREEN IPB PCB V2.0_A01 03ZSTL6-00-201-RS Industrial Power Board
  • WINGREEN CANopen_ADAPTER V5.0_A01 03ZSTI-00-501-RS Module
  • WINGREEN PUIM V2.0 034STM4-00-200-RS Power Interface Module
  • WINGREEN DUDT_DETECTION_V2.0_A01 03ZSTJ0-00-201-RS Detection Control Board
  • WINGREEN LAIB V3.0_A00 034STN1-00-300-RS Embedded Industrial Motherboard
  • WINGREEN FAN_DETECTION V1.0_A05 03ZSTJ3-00-105Fan Monitoring Module
  • WINGREEN LAIB V3.0_A00 034STN1-01-300-RS Interface Board
  • WINGREEN ATKB_V5.0_A01 03ZSTI4-00-501 Industrial Control Keyboard Module
  • WINGREEN ATKB_V5.0_A01 03ZSTI4-01-501 Industrial Motherboard | Embedded Control Board
  • WINGREEN FPB_V3.0_A01 03ZSTJ1-00-301-RS Fieldbus Processor
  • WINGREEN DSPB_V4.0_A02 03ZSTI7-00-402-RS Digital Processing Board
  • WOHNER 31110 Cylindrical Fuse Holder
  • WOODHEAD APPLICOM PCI4000 PCI Communication Card Industrial DeviceNet CAN Bus Interface
  • Woodward 8440-1706 Industrial Control System Module
  • Woodward 8440-2052 H Synchronizer Load Share Module
  • Baldor KPD-TS12C-30E 12.1" Color TFT Touch Screen Ethernet HMI
  • Baldor KPD-TS10C-30E 10" Color TFT Touch Screen Operator Interface with Serial and Ethernet Interfaces
  • Baldor KPD-TS05C-30E 5.6" Color TFT Touch Screen with Serial and Ethernet Interface
  • Baldor KPD-TS05C-30 5.6 Inch Color TFT Touch Screen Serial Interface
  • Baldor KPD-TS05M-10 5.6" Monochrome Touch Screen Serial Interface HMI
  • Baldor KPD-TS03M-10 Monochrome Touch Screen Operator Interface
  • Baldor KPD-KG420-30 4x20 Graphic Display with 12 Function Keys - Serial Interface
  • Baldor KPD-KG420-20 4x20 Character Graphic Display Serial Interface
  • WOODWARD EASYGEN-3200-5 8440-1992 A Genset Controller
  • WOODWARD PEAK200-HVAC 8200-1501 C Version | Industrial Building Automation Controller
  • Woodward 8440-2052 easyGEN-3200 Genset Control Power Management
  • Woodward 8237-1246 + 5437-1119 Control System Module
  • WOODWARD SPM-D11 8440-1703 Overspeed Protection System Module
  • WOODWARD 8237-1369 Governor Control Module
  • Woodward 8237-1600 Digital Control Module
  • WOODWARD BUM60-1224-54-B-001-VC-A0-0093-0013-G003-0000 3522-1004 Industrial Control Module
  • WOODWARD 8200-1302 Genset Controller
  • Woodward 8901-457 Speed Control Module
  • WOODWARD 5501-465 Control Module
  • Woodward 5448-890 SPM-D10 Digital Control Module
  • WOODWARD 5437-1067A Turbine Governor Actuator
  • Woodward 8440-1666 B Digital Control Module
  • WOODWARD 8440-1706 A SPM-D11 Synchronous Phase Modulator Module
  • WOODWARD 5466-425 Programmable Automation Controller (PAC)
  • WOODWARD 5466-318- Industrial Gas Turbine Control Module
  • WOODWARD 5453-277 Digital Control Module
  • WOODWARD 5453-203 Digital Governor Control Module
  • WOODWARD 9907-1106 Pressure Converter
  • WOODWARD 5233-2089 Professional Industrial Control System Module
  • WOODWARD 9907-147 Power outage tripping overspeed protection system
  • WOODWARD 8237-1600 Digital Speed Control System
  • WOODWARD 8402-319 8402-119 microprocessor speed controller
  • Woodward 8237-1006 Digital Governor
  • WOODWARD 5501-471 Communication Module
  • WOODWARD 5466-258 Input/Output Module
  • WOODWARD 5501-467 Multi Protocol Communication Gateway and I/O Expansion Module
  • WOODWARD 5501-470 Digital microprocessor controller module
  • WOODWARD 9907-1200 Digital Governor
  • WOODWARD 8444-1067 High Performance Digital Microprocessor Controller Module
  • WOODWARD 8446-1019 Integrated Gas Engine Electronic Control System
  • WOODWARD 9907-162 Digital Engine Governor
  • WOODWARD 5466-316 Simulation Combination Module
  • WOODWARD 5464-414 Digital Speaker Sensor Module
  • XANTREX XFR40-70 DC power supply
  • XP POWER F8B6A4A6A6 power module
  • XP POWER F8B6D4A3G3 power supply
  • XYCOM XVME-674 VMEbus Single Slot CPU/Processor Module
  • XYCOM XVME-957 Circuit Board
  • XYCOM XVME-976 PC board computer
  • XYCOM XVME-530 8-Channel Isolated Analog Output Module
  • XYCOM Proto XVME-085 Bus Module
  • YAMAHA RCX40 4-AXIS ROBOT CONTROLLER
  • YAMATAKE EST0240Z05WBX00 touch screen display
  • YAMATAKE HD-CAOBS00 flowmeter
  • HIMA X-COM 01 Communication Module
  • HIMA HIMax X-AO 16 01 Analog Output Module
  • HIMA X-AI3251 Analog Input Module
  • HIMA X-DO3251 Digital Output Module
  • HIMA X-DI3202 Digital Input Module
  • HIMA X-DI6451 Digital Input Module
  • YASKAWA USAHEM-02-TE53 AC servo motor
  • Yaskawa JZNC-XPP02B Teaching Programmer
  • YASKAWA CACR-SR07BE12M servo drive
  • YASKAWA JAMSC-B2732V Advanced Drive Controller
  • YASKAWA JGSM-06 Controller
  • YASKAWA PCCF-H64MS 64MB Industrial Memory Module
  • YASKAWA CACR-02-TE1K servo driver
  • YASKAWA JAPMC-IQ2303 Controller Module
  • YASKAWA DDSCR-R84H Controller
  • YASKAWA JANCD-XTU01B circuit board
  • YASKAWA JANCD-XIO01 High Performance PC Input/Output (I/O) Board
  • YASKAWA JACP-317800 servo drive
  • XYCOM 120974 - Circuit Board
  • XYCOM 99298-200 - PC Control Card 99207A-001
  • XYCOM 99298-266 - CPU Board
  • XYCOM 99311-001 - Screen Display Ribbon Cable