Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:

TEKTRONIX 3 Series Mixed Domain Oscilloscope MDO32 and MDO34

来源: | 作者:FAN | 发布时间 :2025-11-20 | 6 次浏览: | Share:


TEKTRONIX 3 series mixed domain oscilloscopes MDO32 and MDO34

Overview and Scope of Application

The specification and performance verification manual for the Tektronix 3 series hybrid domain oscilloscope (with 2 channels for MDO32 and 4 channels for MDO34) covers three major modules: hardware parameters (analog bandwidth of 100MHz-1GHz, maximum sampling rate of 5GS/s, and 16 optional digital channels), multi domain functionality (oscilloscope+spectrum analyzer+arbitrary function generator+digital voltmeter), and performance verification process (20+tests including input impedance, DC balance, analog bandwidth, etc.). The key indicator range is clearly defined (such as maximum input voltage of 300VRMS, display average noise level ≤ -109dBm/Hz), and standardized testing steps are provided (including required equipment list, wiring diagram, data recording table), while emphasizing safety specifications (CAT II). Provide complete technical guidance for instrument calibration, troubleshooting, and compliance verification, including installation category and grounding requirements.

Model differences and core parameters

Model Features MDO32 (2 channels) MDO34 (4 channels) Remarks

Analog bandwidth 100MHz-1GHz 100MHz-1GHz model sampling rate 5GS/s, other 2.5GS/s

Digital channel 16 channels (3-MSO option) 16 channels (3-MSO option) input capacitor 8pF, minimum signal swing 500mVpp

Spectrum analysis 9kHz-1GHz (standard)/3GHz (3-SA3 option) 9kHz-1GHz (standard)/3GHz (3-SA3 option) Display average noise level ≤ -109dBm/Hz

AFG function 1 channel (3-AFG option) 1 channel (3-AFG option) Output waveform includes 13 types such as sine wave, square wave, pulse, etc

Size and weight 370 × 252 × 148.6mm, 5.26kg (1GHz) 370 × 252 × 148.6mm, 5.31kg (1GHz) requires 50.8mm heat dissipation space on the right and rear


Detailed explanation of core hardware specifications

1. Key parameters of simulation channel

Parameter Category Specification Range Remarks

Under the bandwidth of 100MHz/200MHz/350MHz/500MHz/1GHz 1mV/div, the bandwidth of the 1GHz model has been reduced to 150MHz

Sampling rate of 1-5GS/s, maximum 5GS/s when 1-2 channels are activated, and maximum 2.5GS/s when 3-4 channels are activated

Input impedance 1M Ω (± 1%) or 50 Ω (± 1%) 1M Ω input capacitor 13pF ± 2pF

Maximum input voltage 1M Ω: 300VRMS (CAT II); 50 Ω: 5VRMS (peak ≤± 20V) 1M Ω drops to 5VRMS above 450MHz

DC gain accuracy ± 1.5% (5mV/div and above), ± 2.0% (2mV/div), ± 2.5% (1mV/div), with an additional decrease of 0.1% per ℃ above 30 ℃

2. Digital channel (3-MSO option) parameters

Parameter specifications

Number of channels 16 (D0-D15)

Input resistance 101k Ω (typical value)

Input capacitance 8pF (typical value)

Threshold range -15V~+25V

Threshold accuracy ± [130mV+3% x threshold setting] (SPC needs to be performed)

Minimum detectable pulse 2.0ns (requires P6316 probe)

Skew 500ps between channels (typical value)

3. Parameters of spectrum analyzer

Parameter specifications

Frequency range 9kHz-1GHz (standard); 9kHz-3GHz (3-SA3 option)

Resolution bandwidth (RBW) 20Hz-150MHz (1-2-3-5 sequence adjustment)

Display average noise level (DANL) 9kHz-50kHz: ≤ -109dBm/Hz; 5MHz-2GHz:≤-136dBm/Hz

Stray response second harmonic ≤ -55dBc; 3rd harmonic ≤ -53dBc

Phase noise (1GHz CW) 10kHz offset: ≤ -81dBc/Hz; 1MHz offset: ≤ -118dBc/Hz

4. Parameters of any function generator (3-AFG option)

Parameter specifications

13 types of output waveforms including sine wave, square wave, pulse, and ramp

Frequency range: sine wave 0.1Hz-50MHz; Square wave 0.1Hz-25MHz

Range of amplitude 50 Ω load: 10mVpp-2.5Vpp; High resistance load: 20mVpp-5Vpp

DC offset ± 1.25V (50 Ω); ± 2.5V (high resistance)

Rise/fall time 5ns (10% -90%, square wave)

Distortion sine wave ≤ 1% (50 Ω, 1kHz)

image.png

Performance verification process

1. Verify the prerequisites

The instrument needs to be preheated in an environment of 18 ℃ -28 ℃ for at least 10 minutes;

Perform signal path compensation (SPC) (path: Utility → Calibration → Run SPC), if the temperature change exceeds 5 ℃, it needs to be re executed;

The oscilloscope and testing equipment need to be connected to the same AC power circuit (to avoid errors caused by ground offset).

2. Core test items and steps (example)

Qualification criteria for key steps of testing equipment in testing projects

Input impedance (1M Ω/50 Ω) DC voltage source, impedance measuring instrument 1. Connect the voltage source to channel 1; 2. Set the vertical gear to 10mV/div/100mV/div; 3. Measure impedance values of 1M Ω: 990k Ω -1.01M Ω; 50 Ω: 49.5 Ω -50.5 Ω

DC balanced 50 Ω terminal load 1. Channel connected to 50 Ω terminal; 2. Set the vertical gear to 1mV/div-1V/div; 3. Convert the measurement mean to divisions 1mV/div (50 Ω): ± 0.5div; 2mV/div and above: ± 0.2div

Analog bandwidth sine wave generator 1. Input 10MHz signal (8div amplitude); 2. Adjust to the maximum bandwidth frequency; 3. Calculate the gain (Vbw pp/Vin pp) with a gain ≥ 0.707 (-3dB point)

Random noise free (internal noise) 1. Disconnect all inputs; 2. Set up a 50 Ω terminal with full bandwidth; 3. Measure AC RMS noise at 100mV/div level: 1GHz model ≤ 3.1mV; 100MHz model ≤ 2.85mV

Digital threshold accuracy DC voltage source, P6316 probe 1. Connect the probe to the voltage source; 2. Set a threshold of 0V/4V; 3. Record Vs - (high → low) and Vs+(low → high) 0V: ± 0.1V; 4V: 3.78V-4.22V

3. List of Testing Equipment (Table 3)

Minimum requirements for device name, example model

DC voltage source 3mV-100V, ± 0.1% accuracy Fluke 9500B (equipped with 9530 module)

Sine wave generator 9kHz-3GHz, ± 4% amplitude accuracy Anritsu MG3690C

Power meter+sensor -30dBm -+10dBm Rhode&Schwarz NRX (with NRP-Z98)

Frequency counter 0.1Hz-50MHz, 5ppm accuracy Tektronix FCA3000

Digital Multimeter (DMM) DC ± 0.1%, AC RMS ± 0.2% Tektronix DMM4040


Safety and Maintenance

1. Safety regulations

Grounding requirements: A 3-pin power cord must be used, and the grounding conductor must be reliably connected to the ground. Disconnecting the grounding is prohibited;

Input restrictions: Maximum 300VRMS (CAT II) for 1M Ω channel, maximum 5VRMS for 50 Ω channel, overvoltage may damage terminal resistance;

Operation taboos: Do not plug or unplug probes/cables with power on, do not use in damp (>90% RH) or explosive environments, and do not operate after removing the instrument cover.

2. Maintenance and Calibration

Firmware upgrade: 1 Download firmware. img from the official website to USB; 2. Turn off the oscilloscope and plug it into a USB port; 3. Automatic upgrade upon startup (power off prohibited);

Calibration cycle: recommended to be 1 year, with a reference frequency error accumulation of ± 10ppm/year (including aging and temperature effects);

Self check and diagnosis: Path: Utility → Self Test. If it fails, it will enter extended diagnosis and can be exited by pressing MENU OFF (it can be temporarily used when the fault does not affect the measurement).

image.png

Key issue

Question 1:3: The simulated bandwidth of the 3 series MDO is related to the vertical gear. What is the actual bandwidth of the 1GHz model at different vertical gears? How to confirm whether the bandwidth is qualified through performance verification?

Answer:

1、 Actual bandwidth of different vertical gears for 1GHz models

The simulated bandwidth of the 1GHz model decays with decreasing vertical gear, and the specific corresponding relationship is as follows:

Vertical gear (Volts/Div) 50 Ω input bandwidth 1M Ω input bandwidth (typical value)

10mV/div - 1V/div DC - 1.0GHz DC - 1.0GHz

5mV/div - 9.98mV/div DC - 500MHz DC - 500MHz

2mV/div - 4.98mV/div DC - 350MHz DC - 350MHz

1mV/div - 1.99mV/div DC - 150MHz DC - 150MHz

2、 Bandwidth performance verification steps (taking 50 Ω input as an example)

Equipment connection: Connect a sine wave generator (such as Fluke 9500B) to oscilloscope channel 1 via a 50 Ω coaxial cable, with the generator output impedance set to 50 Ω;

Oscilloscope settings:

Reset according to Default Setup;

Set the Acquisition Mode to Sample;

Add peak to peak measurement (Measure → Amplitude → Peak to Peak → Add);

Channel 1 setting: Termination=50 Ω, Vertical Scale=corresponding test gear (such as 1mV/div);

Signal input: The generator outputs a 10MHz sine wave, adjust the amplitude to display 8div on the screen (such as outputting 8mVpp at 1mV/div level), and record the peak value (Vin pp) at this time;

Bandwidth test: Adjust the generator frequency to the maximum bandwidth corresponding to this gear (e.g. 1mV/div corresponds to 150MHz), and record the peak value (Vbw pp) at this time;

Qualification judgment: Calculate the gain as Vbw-pp/Vin pp. If the gain is ≥ 0.707 (-3dB point), the bandwidth is qualified.


Question 2: How to test the threshold accuracy of the digital channel (3-MSO option) of the 3 series MDO? What are the key operational details to pay attention to during testing?

Answer:

1、 Testing steps for threshold accuracy of digital channels

Equipment preparation: DC voltage source (such as Fluke 9500B), P6316 digital probe, BNC-to-0.1 inch pin adapter;

Probe connection: P6316 probe Group 1 is connected to a voltage source, and an adapter is used to match the interface;

Oscilloscope settings:

Reset according to Default Setup;

Activate the digital channel (D15-D0 button → Turn All On);

Set digital channel threshold (such as 0V or 4V): D15-D0 menu → Thresholds → Enter target value;

Trigger setting: Trigger → Source=Target digital channel (such as D0), Slope=Rising/Falling;

Threshold measurement (taking 0V threshold as an example):

Vs - (high to low switching voltage): Set the voltage source to -400mV, gradually increase by 20mV until the channel displays a stable low level (blue), and record the voltage as Vs - at this time;

Vs+(low to high switching voltage): Set the voltage source to+400mV, gradually -20mV until the channel displays a stable high level (green), and record the voltage as Vs+at this time;

Calculate the average threshold: VSAvg=(Vs -+Vs+)/2;

Qualification judgment: The 0V threshold must meet the requirement of * * -0.1V ≤ VSAvg ≤ 0.1V * *, and the 4V threshold must meet the requirement of 3.78V ≤ VSAvg ≤ 4.22V.

2、 Key operational details

Probe grounding: All 8 grounding channels of P6316 probe need to be connected to user grounding to avoid threshold deviation caused by poor grounding;

Voltage stepping: After adjusting the voltage each time, wait for 3 seconds to ensure that the channel state is stable before recording to avoid transient interference;

Trigger slope switching: When measuring Vs -, use the Rising slope, and when measuring Vs+, use the Falling slope to ensure that the trigger point is consistent with the level switching;

Multi channel testing: After testing each channel (such as D0), set its Display to Off and activate the next channel (such as D1) to avoid interference between channels.


Question 3: How to test the display average noise level (DANL) in the spectrum analyzer function of the 3 series MDO? What are the DANL qualification standards for different frequency ranges?

Answer:

1、 DANL testing steps (no input signal, only 50 Ω terminal required)

Equipment connection: oscilloscope RF input connected to 50 Ω feedthrough terminal, no external signal input;

Oscilloscope settings:

Reset according to Default Setup;

Activate RF channel (RF button → On);

Set Trace mode: RF menu → Traces → Average=On, Normal=Off;

Detection mode: Detection Method → Manual → Average;

Reference level: Vertical Settings → Ref Level=-15dBm;

Frequency range setting and measurement:

9kHz-50kHz: Orizontal → Start=9kHz, Stop=50kHz, move the Marker (Multipurpose knob a) to the highest noise point, and record the DANL value;

50kHz-5MHz:Start=50kHz,Stop=5MHz,Center=2.525MHz, Record the highest noise level;

5MHz-2GHz (3-SA3 option): Start=5MHz, Stop=2GHz, Center=1GHz, Span=10MHz, record the highest noise value;

2GHz-3GHz (3-SA3 option): Start=2GHz, Stop=3GHz, Center=2.5GHz, Span=10MHz, record the highest noise value;

Data processing: Ignore stray signals above the noise level (refer to the "residual response" specification) and only record the noise baseline value.

2、 DANL qualification standards for different frequency ranges

Frequency range standard (without 3-SA3) 3-SA3 option typical values (better than standard)

9kHz-50kHz ≤-109dBm/Hz ≤-109dBm/Hz ≤-113dBm/Hz

50kHz-5MHz ≤-126dBm/Hz ≤-126dBm/Hz ≤-130dBm/Hz

5MHz-1GHz ≤-136dBm/Hz ≤-136dBm/Hz ≤-140dBm/Hz

1GHz-2GHz - ≤-136dBm/Hz ≤-140dBm/Hz

2GHz-3GHz - ≤-126dBm/Hz ≤-130dBm/Hz

3、 Testing precautions

Terminal matching: A 50 Ω terminal must be used, otherwise impedance mismatch may cause high noise measurement;

Stray elimination: If there is significantly higher than the base noise at a certain frequency point (such as 1.25GHz, 2.5GHz), the noise values on both sides of the noise should be recorded, rather than the noise itself;

Average time: In the low-frequency range (such as 9kHz-50kHz), wait for 60 seconds to ensure that the average trace is stable before reading.

image.png

  • GE V7668A-131000 350-93100076668-131000 B Control Module
  • GE IS200SPROH1AAB MRP663860 Turbine Protection Relay
  • GE VG5SK8I052311 PM0N2000 Digital Input Module
  • GE MVR1600-4601 air-cooled rectifier module
  • GE CT11T7F10PN1 PMC676RCTX V2.3 01 16 C1145 CR11 V2.X Network Interface Card
  • GE IS215UCVHM06A IS200PMCIH1ACC Controller
  • GE IC695CPU315-BB Programmable Logic Controller
  • GE WES5120 5120-1506 High Performance Field Controller
  • GE D20-PS LFDSC143-4000 processor
  • GE 8811-IO-DC 8811-IO-DC-01 Digital Input/Output Module
  • GE VMIVME-7750 VMIVMME-7750-834 350-02775-834 D Bus Interface Module
  • GE VMIVME-7750 VMIVMME-7750-760000 350-027750-76000 N Bus Processor
  • GE IS210BPPBH2BMD redundant power module
  • GE IS220PDIAH1A 336A4940CSP1 Discrete Input Module
  • GE IC698CMX016 VMIVME-5567-000 350-005567-000 Industrial Module
  • GE V7768-320000 350-9301007768-320000 A0 Controller Module
  • GE IS215VCMIH2CA IS200VCMIH2CAA Communication Interface Board
  • GE IS215UCVGM06A IS215UCVGH1A VMIVMME-7666-11000 Serial Communication Module
  • GE SR745-W3-P5-G5-HI Transformer Protection Relay
  • GE IS220PDIIH1B 336A5026ADP1 Input/Output Module
  • GE IS200SDIIH1ADB MRP683026 Contact Input Isolation Terminal Board
  • GE WESTEM D20 M++CNC System
  • GE SR745-W2-P1-G1-HI-E-H Generator Relay Protection Device
  • GE SR469-P5-HI-A20-H motor protection relay
  • GE IS200TDBTH6ACD gas turbine control system module
  • GE WESDAC D20 C Combination Module
  • GE IC698CMX016 Control Memory Switch Module
  • GE SRPE60A 40 rated plug
  • GE 94-164136-001 motherboard control board
  • ABB PCD237A101 3BHE028915R0101 excitation control module
  • ABB XZC826A102 3BHE036348R0102 control module
  • ABB SAFT183VMC Safety Monitoring and Control Module
  • ABB LD 810HSE EX 3BSE091722R1 fieldbus link equipment
  • ABB RED615 HCDCACADAAHC2BNN11E Line Differential Protection and Control
  • ABB UFC760BE41 3BHE004573R0141 Industrial Computer Board
  • ABB 1TGE120011R2200 Motor Feed Control Unit
  • ABB PM865 3BSE030193R1 Compact Programmable Controller
  • ABB MVR 0.44-10KA high-power motor control module
  • ABB AO810 Input/Output Module
  • ABB SPAU341C1-AA RS488003-AA numerical protection repeater
  • ABB DSTA131 2668180-48/2 Programmable Logic Controller
  • ABB COM00012RAA005844A0004J2RAA005696N Control Panel Module
  • ABB MR7557891MRS050640C power relay
  • ABB 2RCA025057A0001R safety relay
  • ABB 2RCA013892A0003H power relay
  • ABB 2RCA013655A0001H power relay accessories
  • ABB 07KT94-98 controller
  • ABB 1MRK002247 Apr04 Transformer Module
  • ABB UNS0884a-v1 3BHE004385R0001 current sensor
  • ABB WMDOLT2-A75 (65KA) 6E 1TGE106812P0001 Input and Output Board
  • ABB Uras26 F-No. 3.346368.0 A-No 0240462201/2030 Gas Chamber Detector
  • ABB UFC911B101 3BHE037864R0101 control board
  • ABB TU841 3BSE020848R1 Termination unit for 1+1 TB840
  • ABB REF541KM115AAA relay feeder protection
  • ABB NINT-71C main circuit interface board
  • ABB LS14250 lithium battery
  • ABB ICSF08D1 FPR3323101R1012 24VDC high-speed counter
  • ABB DO814 Input/Output System
  • ABB 769111B gas chamber detector
  • ABB CM10/00MU1E0/STD Process Controller
  • ABB 769154 A filter element
  • ABB 769137 C 13CO2-10% 0746919 E detector
  • ABB 0769143 A Sample cell (Al), 175 mm
  • ABB 0002-07-2-000001-01 BMXS Scientific Module (ADC)
  • ABB CM15/000S0E0/STD Universal Process Indicator
  • ABB BSD0750 servo drive
  • ABB CI854BK01 Communication Interface Module
  • ABB XVC772A102 3BHE0322285R0102 circuit board
  • ABB AI04 Input/Output System
  • ABB TU847 module terminal unit
  • ABB TB807 module bus terminator
  • ABB PP877K control panel
  • ABB AO845A eA Analog Output Module
  • ABB SD822 power supply equipment
  • ABB 3BHB006716R0277 SYN5302A-Z.V277 synchronizer
  • ABB GFD233A103 3BH02294R0103 Controller
  • ABB 129740-002 134177-001 Intelligent I/O Module
  • ABB XUD194 3BHE018137R0001 AC800PEC High Performance Controller
  • ABB T3N225 Circuit Breaker
  • ABB A30-30-10RT three pole AC contactor
  • ABB SYN5302A-Z, V217 3BHB006716R0217 digital synchronizer
  • ABB NBIO-31 3BSE011337R1 I/O and Expansion Control Module
  • ABB 5SHX1960L0006 3BHB016120R0002 3BHE019719R0101 GVC736BE101 High Voltage Inverter Module
  • ABB PPC905AE101 3BHE014070R0101 control module
  • ABB REF615E_E HBFHAEAGNBA1BNN1XE digital feeder protection relay
  • ABB XVC770BE101 3BHE02103R0101 circuit board module
  • ABB 3BHL000986P7001 redundant DC power supply unit
  • ABB 3HAB8101-18/09A servo drive
  • ABB PM876-1 3BDH000707R1 Controller
  • ABB PPD117A3011 3BHE030410R3011 Excitation Controller Module
  • ABB 1MRK0023505-AA Transformer Differential Protection Relay
  • ABB PFSA140RULLM7A 3BSE006503R1 safety relay module
  • ABB PFSA140RULM1I 3BSE06503R1 drum power supply device
  • ABB MVME162-010A Embedded Controller Module
  • ABB 500BIM01 1MRB150024R0002 Digital Input Module
  • ABB 500BIM01 1MRB160024R0002 Digital Input Module
  • ABB 500PSM03 1MRB 150038 R1 894-030375D 136-011100H power module
  • ABB 500PSM02 1MRB150015R1 AD-272.100.20-01 AZ: C digital power module
  • ABB 500AIM02 1MRB150022 R0002 1HDF 930412 X010 Controller Module
  • ABB 500AIM02 1MRB150022 R0002Y 1HDF 930412 X010 Controller Module
  • ABB 500AIM02 1MRB150022R001 1HDF 930412 X010 Analog Input Module
  • ABB 500MTM02 1MRB150020R1102 1HDF 930512 X010 Controller Module
  • ABB 500MTM02 1MRK001967-AA 1HDF 930512 X010 Input/Output Module
  • ABB 500MTM02 1MRB150020R0712 1HDF 930512 X010 module
  • ABB 500BOM01 1MRB150023R0002 digital output module
  • ABB 500TRM02 1MRB150011R1 Terminal Relay Module
  • ABB 500TRM02 1MRB150011R0001 Transformer Monitoring Relay
  • ABB 500CPU03 1HDF700003R5122 Central Processing Unit
  • ABB 500PB101 1MRB178009R0001 1MRB200064/C Binary Input Module
  • ABB 500CSP04 HE401314/0002 1MRB150051R2 Input Module
  • ABB 500CMP04 HE401314/0001 1MRB150051R1 power module
  • ABB DSAO120 57120001-EY Digital Output Module
  • ABB SUE3000 1VCF750090R0804 servo drive module
  • ABB PFRL101C-1.0KN 3BSE023316R1002 radial weighing sensor
  • ABB UNS4684A-P, V.1 HIEE30514R00R00001 Communication Module
  • ABB PVD164A2059 3BHE014340R2059 excitation controller
  • ABB 3BHE046836R0102 GFD563A102 Analog I/O Module
  • ABB PFCL201CE 10KN 3BSX105983-100 Weighing Sensor
  • ABB PFCL201C 20KN 3BSE023409R20 Weighing Sensor
  • ABB 216VC62A HESG324442R112/F Signal Digital Processor
  • ABB 216EA61B HESG448230R1/G High Voltage DC Converter Valve
  • ABB 216AB61 HESG324013R101 digital output unit
  • ABB REF542 1VCR007346 G0028 Intelligent Sensor
  • ABB INSUMMCU2 MCU2A02V24 Intelligent Motor Control Unit
  • ABB MCU2A01C0-4 motor control unit
  • ABB PDP22-FBP fieldbus interface
  • ABB PNI800A Network Interface Module
  • ABB 3BHE039724R0C3D PPD513AOC 100440 Controller