Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:
  • GE IS200STAIS2A - DINRAIL TRBD ANALOG
    ❤ Add to collection
  • GE IS200STAIS2A - DINRAIL TRBD ANALOG

    110V-380V
    5W-130W
    1A-30A
    1 year
    30
    United States, France, Japan, Viet Nam, Australia, Russia, Germany, Italy, Arabia
    IS200STAIS2A - DINRAIL TRBD ANALOG
    • ¥12000.00
      ¥24520.00
      ¥12000.00
      ¥12000.00
    • Satisfaction:

      Sales: 0

      Review: 0

    Weight:3.600KG
    • Quantity:
    • (Inventory: 33)
Description
IS200STAIS2A - DINRAIL TRBD ANALOG

GE IS200STAIS2A - DINRAIL TRBD ANALOG

Part Number IS200STAIS2A Manufacturer General Electric Country of Manufacture As Per GE Manufacturing Policy Series Mark VI Function Module Availability In StockIS200STAIS2A is a Simplex Analog Input terminal board developed by GE under Mark VIe control system. The Simplex Analog Input (STAI) terminal board is a small analog input terminal board that connects to the pack and accepts 10 analog inputs and two analog outputs. 

The ten analog inputs support two-wire, three-wire, four-wire, and externally powered transmitters. The two analog outputs are 0-20 mA, but one of them can be jumpered to 0-200 mA current. The board is only available in a simplex configuration. Features High-Density Euro-Block Terminal Blocks: Incorporates high-density Euro-block terminal blocks, which are known for their excellent electrical and mechanical properties. These terminal blocks provide a secure and reliable connection for various input and output signals, facilitating easy and efficient wiring of the system. 

On-Board ID Chip for System Diagnostics: To enhance system diagnostics and monitoring, the component is equipped with an on-board ID chip. This chip uniquely identifies the board to the system, allowing for easy identification and troubleshooting. It provides essential information about the board's status and configuration, making maintenance and troubleshooting processes more streamlined and effective. Compatibility with PAIC I/O Pack: Fully compatible with the PAIC I/O pack. 

This compatibility ensures seamless integration between STAI and the PAIC I/O pack, enabling the exchange of data and signals in a smooth and synchronized manner. Ethernet Connectivity: The I/O pack connects to the controller via Ethernet, enabling fast and reliable communication between the I/O pack and the central controller. Ethernet is a widely adopted communication protocol in industrial applications due to its high data transfer rates, low latency, and robustness. D-Type Connector: The pack features a D-type connector for easy and secure connection to the controller. 

The D-type connector is a standard interface widely used in industrial applications for its reliability and ease of use. Support for Simplex Systems: Specifically designed to support simplex systems. In a simplex configuration, a single controller and I/O pack work together to ensure system operation. This setup simplifies the system architecture and is often used in applications where redundancy is not a critical requirement. Long Cable Length Support: Allows for a maximum two-way cable resistance of 15 ohms and supports cable lengths of up to 300 meters. This feature is beneficial in installations where the I/O pack needs to be located at a significant distance from the controller, without compromising signal integrity and performance. 

 Installation During the installation of the STAI (Signal Transmitter Analog Input), several steps and considerations need to be taken into account. The module, along with a plastic insulator, is mounted on a sheet metal carrier. This carrier provides a stable platform for the module and ensures proper alignment. The carrier can be further mounted on a DIN-rail, which offers a standardized method of installation in industrial environments. Alternatively, the STAI module with the insulator can be mounted directly on a sheet metal assembly, securely bolted to a cabinet or other suitable surface. 

For wiring, it is recommended to use 18 AWG wires, preferably shielded twisted pair cables. These cables are designed to minimize electromagnetic interference and ensure reliable signal transmission. The use of shielded twisted pair cables helps maintain the integrity of analog signals and reduce the risk of noise or signal degradation. The component includes terminal blocks that facilitate the connection of analog inputs and outputs. These terminal blocks serve as interface points for the various types of analog signals supported by the module. Some of the supported analog input types include two-wire transmitters, three-wire transmitters, four-wire transmitters, externally powered transmitters, and voltage inputs with ranges of 5 V or 10 V DC. Similarly, the module supports analog output signals in the form of 0-20 mA and 0-200 mA current ranges. 

To ensure proper grounding and minimize interference, an I/O cable shield terminal is provided. This terminal allows for the connection of shielded cables, which helps protect the analog signals from external electrical noise and disturbances. By following the appropriate installation procedures and utilizing the correct wiring and connections, the STAI module can be successfully integrated into the system, enabling reliable analog signal transmission and processing. Operation Power Supply: All transmitters connected to the terminal board have access to a 24 V DC power supply. 

This power supply ensures a consistent and reliable source of power for the transducers or sensors used in the system. Input Selection: By using jumpers, you can select between current and voltage inputs for the STAI module. This flexibility allows compatibility with a wide range of transducers or sensors that provide either current or voltage outputs, depending on the specific requirements of your application. Analog Output Circuits: The STAI module is equipped with two analog output circuits. One circuit operates within the 4-20 mA current range, providing a standardized output signal. The second circuit can be configured, via a jumper, to operate within either the 4-20 mA current range or the broader 0-200 mA range. 

The selection of the output range depends on the specific application and the compatibility requirements of the receiving devices or systems. Limitations for TMR or TBAI Applications: It's important to note that the terminal board of the STAI module cannot be used for Triple Modular Redundant (TMR) or Terminal Board Analog Input (TBAI) applications. This limitation arises from the presence of only one cable connection on the terminal board, which is insufficient for achieving redundant or expanded input capabilities typically required in TMR or TBAI setups. Configuration It offers configuration options through the use of jumpers. These jumpers play a crucial role in customizing the functionality of the board according to specific requirements. 

By referring to the installation diagram, the location of these jumpers can be identified. Jumpers J1A through J8A provide the ability to choose between current or voltage input for the terminal board. This flexibility allows for compatibility with different types of input signals, catering to a wide range of applications. Jumpers J1B through J8B determine whether the return is connected to the common terminal. The common terminal serves as a reference point or ground for the input signals. By adjusting these jumpers, it is possible to establish whether the return is connected to the common terminal or not for each input. 

For precise input current selection, jumpers J9A and J10A are available. These jumpers allow you to choose between an input current of 1 mA or 20 mA, depending on the specific requirements of the system. Additionally, jumpers J9B and J10B also impact the connection of the return to the common terminal, providing further control over the circuit configuration. Among the available jumpers, J0 serves a unique purpose. Jumper J0 allows the selection of either 20 mA or 200 mA for output 1, providing the necessary flexibility to adapt the terminal board's output to the desired specifications. 

 Diagnostics The board incorporates diagnostic tests on the terminal board to ensure proper functionality and identify potential issues. These diagnostic tests involve specific mechanisms and devices that enable the board to detect and report faults or hardware incompatibilities. The diagnostic procedures are as follows: Voltage Drop Test: The board utilizes a series resistor to measure the voltage drop across it, providing an indication of the output current. By monitoring the voltage drop, the board's I/O processor can assess the health of the outputs. If any one of the two outputs deviates from the expected values or becomes unhealthy, the I/O processor generates a diagnostic alarm or fault. This fault alert notifies users or system administrators that there is a potential issue with the outputs, enabling them to take appropriate actions to rectify the problem. 

Cable Connector ID Device: Each cable connector present on the terminal board is equipped with its own ID device. This ID device is an integrated chip that contains essential information, including the terminal board's serial number, board type, revision number, and the location of the connector (JR, JS, JT). The ID device is a read-only chip, meaning it can be interrogated by the board's I/O controller to retrieve the encoded information. During the diagnostic process, the I/O controller reads the information from the ID device of each cable connector. It compares this information with the expected values, which are typically pre-programmed or stored within the system. 

If a mismatch or inconsistency is detected between the read data and the expected values, it indicates a hardware incompatibility between the terminal board and the connected cables. In such cases, the I/O controller generates a hardware incompatibility fault, indicating that there is a mismatch between the terminal board and the connected cables. 

The hardware incompatibility fault serves as an alert to users or technicians, informing them that the current terminal board configuration and the connected cables may not be compatible. This enables them to address the issue by ensuring the correct cables are used or making the necessary adjustments to achieve compatibility. By incorporating these diagnostic tests, it provides mechanisms to detect potential faults and hardware incompatibilities. These diagnostic procedures enable the board to monitor and assess the health of its outputs and verify the compatibility of the terminal board with the connected cables. The generated diagnostic alarms and hardware incompatibility faults serve as valuable information for troubleshooting and maintenance, aiding in the prompt identification and resolution of any potential issues encountered during the operation of the board.Module manufactured by General Electric as part of the Mark VI/VIe Series used in gas turbine sppedtronic control systems

  • User name Member Level Quantity Specification Purchase Date
  • Satisfaction :
No evaluation information
  • Honeywell Fusion4 MSC-L Multi Stream Loading Controller
  • Honeywell IPC 620-06 Programmable Controller
  • Honeywell Enhanced Micro TDC 3000 Control System
  • Honeywell Expert LS I/O System
  • Honeywell Expert PKS Universal Process Cabinet
  • KEBA KeConnect I/O: Modular Industrial Automation I/O System
  • KEBA FM 299/A GA1060 fieldbus main module
  • KEBA KeControl C1 CP 03x: Highly Integrated Embedded Industrial Controller
  • KEBA KeControl series controllers
  • KEBA KeConnect C5: High density modular IO system empowering industrial automation
  • KEBA DI 260/A Digital Input Module
  • Kollmorgen SERVOSTAR 600 (S600) series digital servo drive
  • Kollmorgen S300 Servo Drive Application Guide
  • Kollmorgen H series brushless servo motor and Silverline driver
  • Kollmorgen Servo System Product Guide
  • KOLLMORGEN S200 High Performance Compact Brushless Servo Drive
  • KOLLMORGEN IDC EC Series Electric Cylinder Configuration and Application Guide
  • Selection and Application of KOLLMORGEN E/H Series Stepper Motor
  • Kollmorgen AKD/S700 series servo drive
  • KOLLMORGEN Digifas-7200 Digital Servo Amplifier Application Guide
  • Kollmorgen SERVOSTAR-CD servo drive hardware installation and system configuration
  • MOOG QAIO 16/4 Analog I/O Module Technology Analysis and Application Guide
  • MOOG G128-809A DIN rail power supply
  • MOOG MSD Multi Axis Servo Drive System (DC-AC)
  • MOOG DM2020 Multi axis Servo Drive
  • MOOG M3000 ® Control system and MSC servo controller
  • MOOG G123-825-001 DIN rail buffer amplifier
  • MOOG Servo Electronics Products
  • MOOG T161 Series Rack Mount Digital Brushless Motor Controller
  • Motorola PTX series (PTX700/760/780) portable walkie talkies
  • MOTOROLA MVME2400 series VME processor module
  • MOTOROLA CPCI-6020 CompactPCI Single Board Computer
  • Motorola MVME162 Embedded Controller
  • Reliance Electric Engineering Drive System and DBU Dynamic Braking Unit
  • RELIANCE ELECTRIC INVERTRON DBU Dynamic Braking Unit
  • Reliance 57C413B/57C423 common memory module
  • Rockwell Automation AutoMax™ Distributed Power System
  • Reliance Electric AutoMax Programming Executive V3.5
  • Deep Analysis and Industrial Control Application of Reliance DCS 5000 Enhanced BASIC Language
  • Rockwell Automation MD60 AC Drive
  • COTEK SD Series Pure Sine Wave Inverter
  • RELIANCE ELECTRICI GV3000/SE AC General Purpose (Volts/Hertz) and Vector Duty Drive Version 6.06
  • ABB SACO16D1 Alarm Display Application Guide
  • REXROTH Indramat PPC-R Modular Controller Application Guide
  • REXROTH EcoDrive Cs series AC servo drive system
  • REXROTH IndraControl VEP Embedded Terminal Project Planning and Operation Guide
  • REXROTH IndraDyn S MSK series synchronous servo motor
  • REXROTH 4WRPEH series Directional control valves
  • REXROTH WE 6X series directional valve
  • REXROTH VT-HNC100... 3X Series Digital Axis Controller
  • REXROTH BTV04.2 Micro Control Panel Functions and Applications
  • REXROTH MKD Explosion proof Synchronous Motor Application Guide
  • REXROTH 4WRTE type electro-hydraulic proportional directional valve
  • REXRTOH IndraControl VDP series operation display
  • REXRTOH MSK series synchronous servo motor
  • REXRTOH ECODRIVE DKC Series Drive Controller Comprehensive Fault Diagnosis and Maintenance Guide
  • REXRTOH IndraDrive HMV01 series power supply unit
  • REXRTOH SE 200 Electric Tool Controller Details
  • REXRTOH INDRAMAT RAC 2 Spindle Drive Controller Application Guide
  • REXRTOH CDH1/CGH1/CSH1 series milling machine type hydraulic cylinder
  • REXRTOH MDD Digital AC Servo Motor Application Guide
  • REXRTOH DIAX04 Second Generation Driver Controller Application Guide
  • REXRTOH EcoDrive 03 Drive Controller
  • REXRTOH IndraDrive Controller CS Series Technical Analysis and Application Guide
  • REXRTOH A4VG series 40 axial piston variable displacement pump application guide
  • REXRTOH DDS02.1/03.1 Digital AC Servo Drive
  • REXRTOH VT-HPC Digital Pump Control
  • REXRTOH HNC100-3X Electro hydraulic Motion Control
  • ABB Advant Controller 250 Modular Controller
  • ABB QABP Low Voltage High Efficiency Variable Frequency Motor Application Guide
  • ABB Conductivity Analyzer Application Guide
  • ABB S500 Distributed Remote I/O System
  • ABB AC500 PLC Module Wiring Guide
  • ABB REG216 Digital Generator Protection System
  • Siemens SIRIUS Domestic Control and Protection System
  • Analysis and Application of Siemens SMART LINE V5 HMI Technology
  • SIEMENS CP 5613 A2/CP 5614 A2 Communication Processor
  • SIEMENS SIMOVERT MASTERDRIVES Vector Control Series
  • Siemens 5SN series terminal power distribution products: safe, efficient, and compact electrical solutions
  • Siemens SENTRON 5SY6106-7 miniature circuit breaker
  • Technical Analysis and Application Guide for Siemens SIMATIC TI505/TI500 MODNIM Module
  • Comprehensive Analysis and Configuration Guide for Siemens ET200SP Distributed I/O System
  • Technical Analysis and Application Guide for Siemens EG Frame Molded Case Circuit Breaker NEB/HEB Series
  • Siemens SENTRON 5SY Series Terminal Distribution Products Full Analysis: Innovative Technologies and Application Solutions
  • SIEMENS SIPROTEC 4 System: A Comprehensive Solution for Power Protection and Automation
  • Integration and Application of Siemens SIMO-MM3 Driver Control Block in PCS7 System
  • SINAMICS A10: Intelligent Servo Drive System with Integrated Safety and Efficient Debugging
  • Siemens SITOP UPS 1600/UPS 1100: High reliability DC uninterruptible power supply system for industrial automation
  • Comprehensive Analysis and Selection Guide for Siemens SICAM 8 Substation Automation Platform
  • Siemens SENTRON intelligent circuit protection equipment: full analysis of communication, measurement, and digital management
  • Siemens MOBY I RFID System Configuration and Application Guide
  • SIEMENS S7-1413 Communication Software Architecture and Application Detailed Explanation
  • SIEMENS SINUMERIK System 800 General Interface Technology Explanation and Configuration Guide
  • Siemens SINUMERIK 840C CNC System Installation and Debugging Guide
  • SIEMENS SIMATIC S5-115U Programmable Controller Comprehensive Analysis and Professional Application Guide
  • SIEMENS SIMATIC RF120C Communication Module Comprehensive Analysis and Application Guide
  • Comprehensive analysis and detailed explanation of key technologies for SIEMENS SIMADYN D hardware system
  • Comprehensive Analysis of Siemens TP/OP 170 Series Touch Screen and Operation Panel
  • SIMATIC MODNIM Module Deep Analysis: A Reliable Bridge for Industrial Modbus Communication
  • Comprehensive Analysis and Application Guide for SIEMENS S7-PLCSIM Advanced Simulation Software
  • Technical Analysis and Professional Operation Guide for SIEMENS 1FK6 Servo Motor
  • SIEMENS S7-300 PLC Beginner's Practice: From Hardware Installation to Program Debugging
  • In depth analysis and selection guide for SIEMENS 3AH3 vacuum circuit breaker technology
  • TEKTRONIX MSO5000 and DPO5000 series mixed signal oscilloscope
  • TOSHIBA DI Series Split Air Conditioner
  • TEKTRONIX 5A18N Dual Trace Amplifier
  • Toshiba Discrete IGBTs: Core Architecture, Technological Evolution, and Application Details
  • Foxboro G66 Triconex Tricon Termination Enclosure
  • Triconex Tricon v9-v11 fault-tolerant control system: triple module redundant architecture and high availability design
  • Tricon Triple-Modular Redundant Controller: TMR Architecture for Critical Process Safety
  • Triconex and Pepperl+Fuchs security solutions
  • TRICONEX Trident Controller
  • Woodward EM-80/EM-300 Electric Actuator Specification Guide
  • Woodward EM-80/EM-300 actuator system
  • SCHNEIDER Electric Magelis XBT Series HMI Product Comprehensive Guide and Technical Analysis
  • SCHNEIDER Magelis range Graphic XBT-F / TXBT-F Instruction Manual
  • SCHNEIDER XB2-B Ø 22mm series buttons, selection switches, and indicator lights
  • SCHNEIDER APC Back-UPS Pro Premium battery backup and surge protection for your critical devices
  • SCHNEIDER APC Back UPS Pro Series Uninterruptible Power Supply Complete Usage and Configuration Guide
  • User Guide for SCHNEIDER Service Interface (Part Number LV485500)
  • SCHNEIDER PowerPact ™ H. Modbus Communication User Guide for J and L-type Circuit Breakers
  • SCHNEIDER TeSys D Green series AC/DC universal contactor
  • SCHNEIDER mart series low-voltage distribution products
  • SCHNEIDER TeSys ® GV2/GV3 series motor circuit breakers
  • Schneider Electric ComPacT NSX DC Circuit Breaker Full Solution and Application Guide
  • SCHNEIDER Resi9 The ultimate in residential circuit protection
  • SCHNEIDER Modicon Premium Automation Platform and Unity Software
  • SCHNEIDER Quantum Safety PLC: Complete Analysis of SIL3 Safety Control System