Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:
  • GE IS200TVIBH2B Vibration Terminal Board
    ❤ Add to collection
  • GE IS200TVIBH2B Vibration Terminal Board

    110V-380V
    5W-130W
    1A-30A
    1 year
    30
    United States, France, Japan, Viet Nam, Australia, Russia, Germany, Italy, Arabia

    GE IS200TVIBH2B Vibration Terminal Board

    • ¥23500.00
      ¥24520.00
      ¥23500.00
      ¥23500.00
    • Satisfaction:

      Sales: 0

      Review: 0

    Weight:5.600KG
    • Quantity:
    • (Inventory: 35)
Description

GE IS200TVIBH2B Vibration Terminal Board


GE IS200TVIBH2B Vibration Terminal Board

Part Number IS200TVIBH2B Manufacturer General Electric Country of Manufacture As Per GE Manufacturing Policy Series Mark VI Function Module Availability In StockGeneral Electric Speedtronic Mark VI IS200TVIBH2B is a Vibration Termination Board and is part of the gas and steam turbine control systems. As part of the Mark VI vibration analysis system, the IS200TVIBH2B is usually used in conjunction with aboard. The TVIB board has 8 vibrations I/Os for seismic, velocity, proximity, or accelerometer charge amplifier inputs and outputs, thanks to its two barrier-type terminal blocks. 

These are suitable for shaft speeds ranging from 3,000 to 3,600 revolutions per minute. Quicker shaft speeds, on the other hand, necessitate faster sample rates. The IS200TVIBH2B board features two terminal blocks, six d-shell female connections, and fourteen barrel connectors, among other features. The board also features sixteen jumper switches that allow the end-user to customize the board to their individual need.

Functional Description

IS200TVIBH2B is a vibration terminal board developed by GE. It is a part of Mark VI control system. The TVIB system is compatible with Bently Nevada's Proximitor, Seismic, Accelerometer, and Velomitor probes. These vibration probes receive power from the VVIB boards, operating in either Simplex or TMR (Triple Modular Redundancy) mode. After the probes capture signals, they transmit these signals back to the VVIB boards. Here, the analog-to-digital conversion process takes place, transforming the signals before sending them over the VME bus to the central controller.

Shaft Vibration Monitoring in Mark VI System

The Mark VI system employs Bently Nevada probes for meticulous shaft vibration monitoring, ensuring precision and reliability in assessing machinery health. A maximum of 14 probes can be directly linked to the TVIB terminal board, where two of these probes can be connected via cabling to the VVIB board.

These probes play a pivotal role in capturing vibration data crucial for comprehensive monitoring and analysis of machinery dynamics within the system.

Signal Processing and Transmission

Upon connection to the terminal board, the signals from these probes undergo processing via the VVIB board.

The VVIB board digitizes displacement and velocity signals, facilitating the transmission of this digitized data over the VME bus to the central controller.

This transmission mechanism ensures that crucial vibration data reaches the controller for further analysis and decision-making processes.

Compatible Vibration Probe Types

The TVIB terminal board is compatible with various types of vibration probes, enabling versatile monitoring capabilities. The available probe types include:

Proximity

Velocity

Acceleration

Seismic

Phase

Features

H2A variant distinguishes itself by incorporating BNC connectors, allowing portable vibration data gathering equipment to be seamlessly plugged in.

This functionality is particularly useful for predictive maintenance purposes, enabling swift data retrieval for proactive machinery health assessments. Both board types are equipped with connectors designed for permanent cabling to Bently Nevada vibration monitoring equipment.

This setup facilitates continuous and reliable measurement and analysis of turbine vibration, aiding in ongoing monitoring and analysis of machinery health.

Within the system, the controller manages the generation of alarms and trip logic related to vibration, eccentricity, and axial position. This centralized control mechanism allows the controller to process incoming data, detect anomalies, and trigger appropriate actions or alarms based on preset parameters for maintaining system integrity and safety.

Installation

During the installation process, fourteen vibration probes are meticulously wired to the two terminal blocks, with each probe requiring three wires for proper connectivity. These probes, crucial for comprehensive vibration monitoring, are integrated into the system to capture essential data regarding machinery dynamics.

Probe Configuration via Jumpers:The system allows for the configuration of the first eight probes using jumpers JP1 through JP8. These jumpers serve as selectors, enabling the system to identify and categorize the type of each probe. This configuration step ensures accurate signal processing and interpretation based on the specific characteristics and functionalities of individual probes.

Optional Connectors for Bently Nevada System:The installation procedure incorporates optional connectors, namely JA1, JB1, JC1, and JD1, specifically designed for Bently Nevada systems. These connectors offer flexibility in the system setup, providing an alternative or supplementary connection method tailored for Bently Nevada equipment integration. Their use remains optional, allowing adaptability based on the specific requirements or preferences of the installation process.

Wiring Details for Optimal Functionality:The wiring process, encompassing three wires per probe, ensures proper and stable connectivity between the vibration probes and the terminal blocks. Each wire serves a crucial function in facilitating the transmission of data essential for the comprehensive monitoring and analysis of machinery vibration.

System Adaptability and Customization:The configuration options through jumpers and the inclusion of optional connectors highlight the system's adaptability and customization capabilities. These features allow for tailored integration of vibration probes, ensuring optimal functionality and compatibility with the specific needs and equipment preferences, particularly within Bently Nevada systems, if chosen to be incorporated.


  • User name Member Level Quantity Specification Purchase Date
  • Satisfaction :
No evaluation information
  • Honeywell Fusion4 MSC-L Multi Stream Loading Controller
  • Honeywell IPC 620-06 Programmable Controller
  • Honeywell Enhanced Micro TDC 3000 Control System
  • Honeywell Expert LS I/O System
  • Honeywell Expert PKS Universal Process Cabinet
  • KEBA KeConnect I/O: Modular Industrial Automation I/O System
  • KEBA FM 299/A GA1060 fieldbus main module
  • KEBA KeControl C1 CP 03x: Highly Integrated Embedded Industrial Controller
  • KEBA KeControl series controllers
  • KEBA KeConnect C5: High density modular IO system empowering industrial automation
  • KEBA DI 260/A Digital Input Module
  • Kollmorgen SERVOSTAR 600 (S600) series digital servo drive
  • Kollmorgen S300 Servo Drive Application Guide
  • Kollmorgen H series brushless servo motor and Silverline driver
  • Kollmorgen Servo System Product Guide
  • KOLLMORGEN S200 High Performance Compact Brushless Servo Drive
  • KOLLMORGEN IDC EC Series Electric Cylinder Configuration and Application Guide
  • Selection and Application of KOLLMORGEN E/H Series Stepper Motor
  • Kollmorgen AKD/S700 series servo drive
  • KOLLMORGEN Digifas-7200 Digital Servo Amplifier Application Guide
  • Kollmorgen SERVOSTAR-CD servo drive hardware installation and system configuration
  • MOOG QAIO 16/4 Analog I/O Module Technology Analysis and Application Guide
  • MOOG G128-809A DIN rail power supply
  • MOOG MSD Multi Axis Servo Drive System (DC-AC)
  • MOOG DM2020 Multi axis Servo Drive
  • MOOG M3000 ® Control system and MSC servo controller
  • MOOG G123-825-001 DIN rail buffer amplifier
  • MOOG Servo Electronics Products
  • MOOG T161 Series Rack Mount Digital Brushless Motor Controller
  • Motorola PTX series (PTX700/760/780) portable walkie talkies
  • MOTOROLA MVME2400 series VME processor module
  • MOTOROLA CPCI-6020 CompactPCI Single Board Computer
  • Motorola MVME162 Embedded Controller
  • Reliance Electric Engineering Drive System and DBU Dynamic Braking Unit
  • RELIANCE ELECTRIC INVERTRON DBU Dynamic Braking Unit
  • Reliance 57C413B/57C423 common memory module
  • Rockwell Automation AutoMax™ Distributed Power System
  • Reliance Electric AutoMax Programming Executive V3.5
  • Deep Analysis and Industrial Control Application of Reliance DCS 5000 Enhanced BASIC Language
  • Rockwell Automation MD60 AC Drive
  • COTEK SD Series Pure Sine Wave Inverter
  • RELIANCE ELECTRICI GV3000/SE AC General Purpose (Volts/Hertz) and Vector Duty Drive Version 6.06
  • ABB SACO16D1 Alarm Display Application Guide
  • REXROTH Indramat PPC-R Modular Controller Application Guide
  • REXROTH EcoDrive Cs series AC servo drive system
  • REXROTH IndraControl VEP Embedded Terminal Project Planning and Operation Guide
  • REXROTH IndraDyn S MSK series synchronous servo motor
  • REXROTH 4WRPEH series Directional control valves
  • REXROTH WE 6X series directional valve
  • REXROTH VT-HNC100... 3X Series Digital Axis Controller
  • REXROTH BTV04.2 Micro Control Panel Functions and Applications
  • REXROTH MKD Explosion proof Synchronous Motor Application Guide
  • REXROTH 4WRTE type electro-hydraulic proportional directional valve
  • REXRTOH IndraControl VDP series operation display
  • REXRTOH MSK series synchronous servo motor
  • REXRTOH ECODRIVE DKC Series Drive Controller Comprehensive Fault Diagnosis and Maintenance Guide
  • REXRTOH IndraDrive HMV01 series power supply unit
  • REXRTOH SE 200 Electric Tool Controller Details
  • REXRTOH INDRAMAT RAC 2 Spindle Drive Controller Application Guide
  • REXRTOH CDH1/CGH1/CSH1 series milling machine type hydraulic cylinder
  • REXRTOH MDD Digital AC Servo Motor Application Guide
  • REXRTOH DIAX04 Second Generation Driver Controller Application Guide
  • REXRTOH EcoDrive 03 Drive Controller
  • REXRTOH IndraDrive Controller CS Series Technical Analysis and Application Guide
  • REXRTOH A4VG series 40 axial piston variable displacement pump application guide
  • REXRTOH DDS02.1/03.1 Digital AC Servo Drive
  • REXRTOH VT-HPC Digital Pump Control
  • REXRTOH HNC100-3X Electro hydraulic Motion Control
  • ABB Advant Controller 250 Modular Controller
  • ABB QABP Low Voltage High Efficiency Variable Frequency Motor Application Guide
  • ABB Conductivity Analyzer Application Guide
  • ABB S500 Distributed Remote I/O System
  • ABB AC500 PLC Module Wiring Guide
  • ABB REG216 Digital Generator Protection System
  • Siemens SIRIUS Domestic Control and Protection System
  • Analysis and Application of Siemens SMART LINE V5 HMI Technology
  • SIEMENS CP 5613 A2/CP 5614 A2 Communication Processor
  • SIEMENS SIMOVERT MASTERDRIVES Vector Control Series
  • Siemens 5SN series terminal power distribution products: safe, efficient, and compact electrical solutions
  • Siemens SENTRON 5SY6106-7 miniature circuit breaker
  • Technical Analysis and Application Guide for Siemens SIMATIC TI505/TI500 MODNIM Module
  • Comprehensive Analysis and Configuration Guide for Siemens ET200SP Distributed I/O System
  • Technical Analysis and Application Guide for Siemens EG Frame Molded Case Circuit Breaker NEB/HEB Series
  • Siemens SENTRON 5SY Series Terminal Distribution Products Full Analysis: Innovative Technologies and Application Solutions
  • SIEMENS SIPROTEC 4 System: A Comprehensive Solution for Power Protection and Automation
  • Integration and Application of Siemens SIMO-MM3 Driver Control Block in PCS7 System
  • SINAMICS A10: Intelligent Servo Drive System with Integrated Safety and Efficient Debugging
  • Siemens SITOP UPS 1600/UPS 1100: High reliability DC uninterruptible power supply system for industrial automation
  • Comprehensive Analysis and Selection Guide for Siemens SICAM 8 Substation Automation Platform
  • Siemens SENTRON intelligent circuit protection equipment: full analysis of communication, measurement, and digital management
  • Siemens MOBY I RFID System Configuration and Application Guide
  • SIEMENS S7-1413 Communication Software Architecture and Application Detailed Explanation
  • SIEMENS SINUMERIK System 800 General Interface Technology Explanation and Configuration Guide
  • Siemens SINUMERIK 840C CNC System Installation and Debugging Guide
  • SIEMENS SIMATIC S5-115U Programmable Controller Comprehensive Analysis and Professional Application Guide
  • SIEMENS SIMATIC RF120C Communication Module Comprehensive Analysis and Application Guide
  • Comprehensive analysis and detailed explanation of key technologies for SIEMENS SIMADYN D hardware system
  • Comprehensive Analysis of Siemens TP/OP 170 Series Touch Screen and Operation Panel
  • SIMATIC MODNIM Module Deep Analysis: A Reliable Bridge for Industrial Modbus Communication
  • Comprehensive Analysis and Application Guide for SIEMENS S7-PLCSIM Advanced Simulation Software
  • Technical Analysis and Professional Operation Guide for SIEMENS 1FK6 Servo Motor
  • SIEMENS S7-300 PLC Beginner's Practice: From Hardware Installation to Program Debugging
  • In depth analysis and selection guide for SIEMENS 3AH3 vacuum circuit breaker technology
  • TEKTRONIX MSO5000 and DPO5000 series mixed signal oscilloscope
  • TOSHIBA DI Series Split Air Conditioner
  • TEKTRONIX 5A18N Dual Trace Amplifier
  • Toshiba Discrete IGBTs: Core Architecture, Technological Evolution, and Application Details
  • Foxboro G66 Triconex Tricon Termination Enclosure
  • Triconex Tricon v9-v11 fault-tolerant control system: triple module redundant architecture and high availability design
  • Tricon Triple-Modular Redundant Controller: TMR Architecture for Critical Process Safety
  • Triconex and Pepperl+Fuchs security solutions
  • TRICONEX Trident Controller
  • Woodward EM-80/EM-300 Electric Actuator Specification Guide
  • Woodward EM-80/EM-300 actuator system
  • SCHNEIDER Electric Magelis XBT Series HMI Product Comprehensive Guide and Technical Analysis
  • SCHNEIDER Magelis range Graphic XBT-F / TXBT-F Instruction Manual
  • SCHNEIDER XB2-B Ø 22mm series buttons, selection switches, and indicator lights
  • SCHNEIDER APC Back-UPS Pro Premium battery backup and surge protection for your critical devices
  • SCHNEIDER APC Back UPS Pro Series Uninterruptible Power Supply Complete Usage and Configuration Guide
  • User Guide for SCHNEIDER Service Interface (Part Number LV485500)
  • SCHNEIDER PowerPact ™ H. Modbus Communication User Guide for J and L-type Circuit Breakers
  • SCHNEIDER TeSys D Green series AC/DC universal contactor
  • SCHNEIDER mart series low-voltage distribution products
  • SCHNEIDER TeSys ® GV2/GV3 series motor circuit breakers
  • Schneider Electric ComPacT NSX DC Circuit Breaker Full Solution and Application Guide
  • SCHNEIDER Resi9 The ultimate in residential circuit protection
  • SCHNEIDER Modicon Premium Automation Platform and Unity Software
  • SCHNEIDER Quantum Safety PLC: Complete Analysis of SIL3 Safety Control System