Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:
  • GE IS230TCSAH1A - TSVCH1A/PSVOH1B(3X) MODULE
    ❤ Add to collection
  • GE IS230TCSAH1A - TSVCH1A/PSVOH1B(3X) MODULE

    110V-380V
    1A-30A
    5W-130W
    1 year
    30
    United States, France, Japan, Viet Nam, Australia, Russia, Germany, Italy, Arabia
    IS230TCSAH1A - TSVCH1A/PSVOH1B(3X) MODULE
    • ¥12000.00
      ¥24520.00
      ¥12000.00
      ¥12000.00
    • Satisfaction:

      Sales: 0

      Review: 0

    Weight:3.600KG
    • Quantity:
    • (Inventory: 33)
Description
IS230TCSAH1A - TSVCH1A/PSVOH1B(3X) MODULE

GE IS230TCSAH1A - TSVCH1A/PSVOH1B(3X) MODULE

OVERVIEW

Product Definition and Function:The GE IS230TCSAH1A - TSVCH1A/PSVOH1B (3X) module is an important part of GE's industrial automation control systems. It is primarily used to process complex industrial process signals, especially playing a key role in areas such as turbine control systems. The module is capable of receiving and processing a wide range of input signals, both analogue and digital, and outputting processed signals to control related equipment such as valves, motors, etc. for precise control and monitoring of industrial processes.

Working Principle

Signal acquisition process

Analogue Signal Acquisition: The module has multiple analogue input channels to receive analogue signals from a variety of sensors. These sensors may include temperature sensors (output voltage or current signals, the size of which is related to the temperature), pressure sensors (the output is proportional to the pressure of the electrical signal) and so on. When an analogue signal enters the module, it first passes through a signal conditioning circuit. This circuit mainly performs operations such as filtering, amplification and level conversion. For example, weak signals, such as the tiny voltage signals output by some high-precision temperature sensors, are amplified so that they can be accurately converted by the subsequent analogue-to-digital conversion (A/D) circuit. At the same time, a filtering operation removes high-frequency noise and interference components from the signal to ensure signal quality. Level conversion converts the level of the external signal to a level standard that can be processed uniformly within the module. The analogue signals after signal conditioning are fed into the A/D converter circuit, which converts them into digital signals for further processing inside the module.The resolution of the A/D converter is usually high, so that it can accurately quantify the analogue signals into digital values to meet the demand of high-precision signal processing.

Digital Signal Acquisition: The digital input channel of the module is used to receive digital signals from digital sensors or switching devices (e.g. limit switches, proximity switches, etc.). After entering the module, these digital signals are buffered and level-matched to ensure signal stability and compatibility. These digital signals are then transmitted directly to the control circuits inside the module to await subsequent processing.

Signal Processing and Transmission Process

Data processing: The converted analogue and digital signals are transmitted to the module's microprocessor or control unit via the internal data bus. The microprocessor processes these signals according to pre-programmed algorithms and logic. For example, the collected temperature and pressure signals may be operated to determine whether the industrial process is in a normal state or to calculate some important process parameters based on these signals. During the signal processing, the module may also perform data calibration, linearisation and other operations to ensure the accuracy and validity of the signals.

Communication interface and transmission: The processed signals are transmitted to the upper control system or other relevant devices through communication interfaces (e.g. industrial standard communication protocols such as Industrial Ethernet, Profibus, etc.). The communication interface ensures fast and stable data transmission, and the module can support a variety of communication rates to adapt to different industrial application scenarios. Through this communication process, the module sends the collected and processed signals to the control system for higher-level decision-making and control operations.

Signal output process

Receiving control commands: The output part of the module receives control commands from the control system, which are transmitted in the form of digital signals through the communication interface to the control unit of the module. The control instructions may include the opening of control valves, the starting and stopping of motors and speed regulation.

Signal drive and output: The control unit generates the corresponding output signals according to the instructions. For digital output signals, such as controlling the start/stop of a motor, the signals will pass through the digital output driver circuit, which converts the digital signals into level signals that can drive external relays or contactors. For analogue output signals, such as controlling the opening of a valve, the digital signal will first be converted to an analogue signal by a digital-to-analogue conversion (D/A) circuit, and then go through an analogue signal conditioning circuit (including amplification, filtering, etc.), so that the analogue signal output meets the signal requirements of the external device (e.g., motorised valve actuator), thus realising the precise control of the industrial device.

Performance characteristics

High-precision Signal Processing Capability: The module demonstrates a high degree of precision in signal acquisition and processing, with A/D conversion accuracy of ±0.1% - ±0.5% full scale and D/A conversion accuracy at a similarly high level. This makes it possible to accurately acquire and reduce a wide range of sensor signals and accurately output control signals to ensure precise control of industrial processes. For example, in temperature measurement and control applications, it is possible to provide highly accurate temperature values and precisely regulate the output of temperature control devices.

Multi-Channel Signal Processing: Multiple input and output channels enable simultaneous processing of many different types of signals. The number of input channels may vary from 16 - 32 and the number of output channels may vary from 8 - 16, depending on the module type. This multi-channel design allows for the control of complex industrial processes, such as the simultaneous acquisition of signals for multiple temperature, pressure, flow and other parameters, and the simultaneous control of multiple valves, motors and other equipment.

Strong anti-interference ability: In the industrial environment, there are various electromagnetic interference (EMI) and radio frequency interference (RFI). The module can effectively resist these interferences through good hardware design (e.g. shielding shell, isolation circuit) and software algorithms (e.g. signal filtering, digital signal error correction). For example, in a strong electromagnetic interference environment, it is still able to accurately collect and transmit signals to ensure the stability of industrial control systems.

Compatibility and Integration: The design takes into account compatibility with other GE automation equipment as well as a variety of industrial standard equipment. It can communicate and work with the main controller, other I/O modules, sensors and actuators through standard interfaces. This compatibility makes it easy to integrate into existing industrial automation systems, whether new equipment is being built or existing systems are being upgraded.

Technical Parameters

Input parameters

Number and range of analogue input channels: Typically 16 - 32 analogue input channels, capable of receiving a wide range of analogue signal types. For example, the range of voltage signals can include - 10V - + 10V, 0 - 10V, etc., and the range of current signals can include 4 - 20mA, 0 - 20mA, etc., in order to adapt to the output signals of different sensors.

Digital Input Types and Level Standards: Supports a variety of digital signal types, such as TTL (Transistor Transistor Logic) levels, CMOS (Complementary Metal Oxide Semiconductor) levels, TTL levels generally range from 2V - 5V at high levels and 0V - 0.8V at low levels; CMOS level ranges vary depending on the specific device.

Input Signal Resolution (Analogue Inputs): The analogue input channels can have a resolution of 12 - 16 bits, which allows for more accurate acquisition of analogue signals.

Output Parameters

Number and Range of Analogue Output Channels: Typically there are 8 - 16 analogue output channels, the analogue output range can be 0 - 10V voltage signals, 4 - 20mA current signals, etc., which can be used to control the operating status of external analogue devices.

Digital Output Characteristics: The digital outputs provide sufficient drive capability, with output currents in the tens of milliamps (mA) range, to ensure that external digital devices (e.g. relays, indicators, etc.) can be driven reliably. The output signal levels conform to industry standards, such as 3.3V - 5V (TTL levels) for high levels and near 0V for low levels.

Output signal update frequency (analogue outputs): The analogue outputs have a high update frequency, capable of thousands of times per second, depending on the system setup and requirements, and the high update frequency helps to achieve precise dynamic control of external devices.

Communication parameters

Supported communication protocols: When communicating with the control system, GE-specific communication protocols are supported, and may also be compatible with some industry-standard communication protocols (e.g. Modbus, etc.) to facilitate data interaction with other devices or systems.

Communication rate: In the internal system communication, the communication rate may reach about 10Mbps - 100Mbps, depending on the configuration of the system and the application scenario, to ensure the fast transmission of data between the module and the system.

  • User name Member Level Quantity Specification Purchase Date
  • Satisfaction :
No evaluation information
  • XYCOM MOTION 1300-00010000000000H Operating Interface 100-120 VAC
  • Xycom Automation XT1502T Pro Face
  • XYCOM PRO-FACE 1547 (1547-0011310130000)
  • PRO-FACE XYCOM 1546 Heavy Industrial PC 1546-102011010001
  • PRO-FACE XYCOM 1546 Heavy Industrial PC 1546-1020310130001
  • XYCOM Automatic 9987 Operating Interface PN.9987-3338-2100 Computer Board
  • PHILIPS PG 1220 SERIES WITH CPU BOARD, XYCOM XVME-491 , CNC SERVO CONTROLLER
  • XYCOM 3512KPT 139649-002A DHL
  • XYCOM XVME-202 Controller Module Board
  • Xycom Automation Pro-face Model 4115T Pentium 4 2GHz 640KB RAM
  • PRO face Xycom 1341 egemin PM-070016 computer P/N 701301-01
  • Xycom 2050T interface workstation 1.12/. 70AMP 110/240Vac 12
  • XYCOM 1546 PROFACE Industrial Computer with RS View 32 Batch Q302
  • PRO-FACE XYCOM 1546 Heavy Industrial PC 1546-1120310130001
  • Xycom Automation XT1502T Pro Face LAT PANEL INDUSTRIAL MONITOR
  • Xycom Pro Face 1546 Industrial Computer 2000-1000-DVDW-XP
  • Xycom Automation XT1502T FLAT PANEL INDUSTRIAL MONITOR
  • XYCOM AUTOMATION 1300-0001000000000 100-240VAC 0.5A UNMP
  • Xycom 2000T 97957-101 97957101 Operator Interface Panel with 2112-MEM
  • LCD monitor upgrade for 14 inch Xycom 9450 and Xycom 9403 control with cable kit
  • Xycom 2060 LCD Upgrade Monitor with Cable Kit 12 inches
  • Xycom 9450 14-inch LCD monitor upgrade with Cable Kit
  • XYCOM XVME-956 Optical Disc Module XVME956
  • XYCOM Pro-Face 3712 KPM Industrial PCs
  • XYCOM XVME-400 70400-001 card
  • Xycom 3515 KPM PM101906 Operator Interface
  • Xycom AOUT XVME-530 P/N 70530-001 FREV 2.2L
  • Xycom XVME-100 RAM Memory Module
  • GE SR489-P5-LO-A20-E relay protection
  • KONGSBERG DPS132 positioning system host navigation ship
  • PRO-FACE XYCOM 1546 Heavy Industrial PC 1546-1020310130001
  • Xycom XVME-660 processor module 70660-716
  • Xycom 10330-00800 board
  • XYCOM 4860 A PLC
  • Xycom 81625DA control board 81625
  • Allen Bradley 91195A circuit board programmable for A-B Xycom terminals
  • Xycom 94354-001 display screen 94354001 8503 HMI front panel
  • XYCOM 8100-0272A Brown Output Sensor Board
  • Xycom 9485 Automatic CY
  • Xycom XVME-244 DIO Digital Input/Output Card Module 70244-001 VME Bus
  • XYCOM XVME-400 70400-001 card
  • ADEPT TECH/XYCOM 70244-702 10330-00800 PC board
  • XYCOM AIO XVME-540 Analysis of I/O Module
  • XYCOM 2050 Warranty&Extended Technical Support
  • XYCOM 81625DA Control Board
  • XYCOM 70600-001 PC board 70600001 REV 1.4
  • Xycom XVME-979 Rev. 1.1 CD-ROM/HDD/FDD interface card/module suitable for MV controller
  • XYCOM XVME-100 70100-001 card
  • PHILIPS PG 1220 SERIES WITH CPU BOARD, XYCOM XVME-491 , CNC SERVO CONTROLLER
  • Xycom 96574-001 module circuit board 96529-001 8503 PCB PWA programmable
  • ABB 3BDH000031R1 FI 820F Fieldbus Module Serial
  • ABB SPHSS13 Hydraulic Servo Module
  • ABB CB801 3BSE042245R1 PROFIBUS DP panel
  • ABB 57120001-P DSAI 130 Analog Input Board
  • ABB 086329-003 ECS BOARD Digital Input Module
  • ABB 086349-002 Industrial Control Circuit Board
  • ABB 086345-504 digital output module
  • ABB PFCL201C 10KN Tension Controller
  • ABB 3HAC17484-otational ac motor M8
  • ABB 5SHY3545L0009 High Voltage Converter Board
  • ABB 64009486 NPCT-01C; PULSE COUNT/TIMER
  • ABB HESG324013R0101 216AB61 BINARY OUTPUT * NCS1704
  • ABB 5SHX1060H0003 Reverse Conducting Integrated Gate-Commutated Thyristor
  • ABB Advant Controller 31 Series 07 KT 97/96/95 Basic Unit Hardware
  • ABB C310/0020/STD Wall-/Pipe-mount Universal Process Controller
  • ABB REF610 feeder protection relay Fault recording and communication function
  • ABB REF610 Feeder Protection Relay
  • ABB 3HAC022286-001 Serial measurement unit DSQC 633
  • ABB DSQC332A Digital I/O Module
  • ABB HIEE205010R0003 UNS 3020A-Z, V3 Ground Fault Relay
  • ABB F360 X Residual current operated circuit-breakers (RCCB)
  • ABB SK616001-A contact block
  • ABB 22mm series industrial control component models
  • ABB 1SFC261001-EN 22mm series industrial control components
  • ABB 3HAC0977-1 Resistor 10 Ohm 50W
  • ABB S503X Circuit Breaker
  • ABB S500 series miniature circuit breaker
  • ABB BC25-30-10-01 CONTACTOR
  • ABB Contactor Series Operating Instructions
  • ABB DSQC504 connector unit board
  • ABB DSQC509 Industrial Automation Module
  • ABB DSQC346B - Modular I/O System
  • ABB 3HAB8859-1/03A Industrial Control Module
  • ABB ACS800 Standard Control Procedure 7. x
  • What are the common faults and solutions for MLink interface modules?
  • ABB MNS iS System MLink 1TGE120021 Interface Module
  • ABB 3BHS600000 E80 RevF Service Manual PCS6000
  • ABB PCS6000 SYSTEM DRIVES
  • ABB 3HAC5518-1 Industrial Control Module
  • ABB 3HAC5497-1 Industrial Control Module
  • ABB 3HAC7344-1 Main Line Filter Unit
  • ABB 3HAC7681-1 connection harness
  • ABB 3HAC6428-1/04 high-performance control module
  • ABB 3HAC6157-1- High Performance Industrial Control Modules
  • ABB 3HAC10847-1 Industrial Control Module
  • ABB 3HAC5566-1 Industrial Control Module
  • ABB 3HAC9710-1 Robot Heat Exchanger Unit
  • ABB SPBLK01 Blank Faceplate
  • ABB IMDSM04 pulse input slave module
  • ABB INIIT03 Interface Modules
  • ABB IMFEC11/12 Analog Input Module
  • ABB IMDSO14 Digital Output Module
  • ABB NIT03 control module
  • ABB INNIS21 Network Interface Slave module
  • ABB IMBLK01 module
  • ABB 3HAC031683-004 teaching pendant cable
  • ABB SPBRC300 Controller
  • ABB PFXA401SF as a unit module
  • ABB HAC319AEV1 high-performance control module
  • ABB HIEE450964R0001 SA9923A-E circuit board
  • ABB CSA463AE HIE400103R0001 Industrial Automation Module
  • ABB UAC326AE HIEE401481R0001 excitation system module
  • ABB NU8976A High Performance Digital I/O Module
  • Alstom 43297029 Control Module Card
  • ALSTOM PIB1201A 3BEC0067- High precision industrial power supply
  • Alstom PIB310 3BHB0190 control module
  • Alstom PIB102A 3BEB0180 control board
  • ALSTOM PIB100G 3BE0226 Control Board
  • Alstom BGTR8HE 24491276A1004 Industrial Control Module
  • Alstom LC105A-1 Industrial Control Module
  • Alstom AL132 control board module card
  • Alstom IR139-1 module card
  • Alstom AM164 control board
  • ABB IGBT MODULE KIT FS450R17OE4/AGDR-71C S TIM FOIL SP 3AXD50000948185
  • ABB IGBT MODULE KIT FS300R12KE3/AGDR-71C S 68569346
  • ABB IGBT MODULE KIT FS450R17KE3/AGDR-72C S 68569427
  • ABB IGBT MODULE KIT FS450R17KE3/AGDR-71C S 68569591
  • ABB IGBT MODULE KIT FS300R17KE3/AGDR-76C S 68569362