Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:
  • GE DS215SLCCG1AZZ01B LAN Communications Card
    ❤ Add to collection
  • GE DS215SLCCG1AZZ01B LAN Communications Card

    110V-380V
    5W-130W
    1A-30A
    1 year
    30
    United States, France, Japan, Viet Nam, Australia, Russia, Germany, Italy, Arabia

    GE DS215SLCCG1AZZ01B LAN Communications Card

    • ¥34000.00
      ¥34670.00
      ¥34000.00
      ¥34000.00
    • Satisfaction:

      Sales: 0

      Review: 0

    Weight:3.400KG
    • Quantity:
    • (Inventory: 33)
Description

GE DS215SLCCG1AZZ01B LAN Communications Card


GE DS215SLCCG1AZZ01B LAN Communications Card

Part Number DS215SLCCG1AZZ01B Manufacturer General Electric Country of Manufacture As Per GE Manufacturing Policy Series Mark VI/VIe Function Module Availability In StockDS215SLCCG1AZZ01B is a LAN Communications Card developed by GE. It is a part of Mark V control system. It has circuits for communications with the drive or exciter that are both isolated and non-isolated. The programmer module is connected to the 16-position alphanumeric display (and display controller, U18). The KPPL connector receives the programmer module, which is mounted to the SLCC. 

The LAN Control Processor, U1, is the main microprocessor (LCP). Two replaceable EPROMs contain the LCP software (U6 and U7). U8 and U9 supply the LCP-specific Memory. Communication between the LCP and the Drive Control Processor (DCP) on the Drive Control Card occurs via 3PL and dual-ported RAM (U5). Dual-ported RAM [DPR] is RAM set up as memory arrays that two microprocessors may access both independently and concurrently. Mark V improves unit reliability even further by employing three redundant control processors. This triple modular redundant (TMR) design can safely operate, control, and protect a unit in the event that one of its control processors or control processor components fails. 

The TMR design allows for the shutdown and repair of a single control processor without shutting down the turbine. Board Connections Five connectors (marked _PL) connect to the other controller boards, external signals, and the network. These are the connectors to other boards: 2PL Connector: This connector is responsible for connecting 脗卤5, 15, and 24 V dc input/output (I/O) signals between various components. The Power Supply/Interface Board (IMCP, DCI, SDCI, or DCFB), the Drive Terminal Board or Simple Drive Terminal Board, and the Drive Control Card establish connections using this connector. It enables the exchange of power and I/O signals required for communication and coordination between these boards. 

3PL Connector: The 3PL connector is used to connect the inputs from the Drive Control Card. It allows the Drive Control Card to transmit input signals to the SLCC, enabling communication and coordination between these two components. It relies on these inputs to perform its control functions effectively. 10PL Connector: This connector serves as the interface for input/output (I/O) signals between the LAN I/O Terminal Board and the Card. It enables communication between the LAN card and the LAN I/O Terminal Board, facilitating the exchange of data and signals over the network. This connector plays a vital role in integrating the LAN Card into the networked system and allows for remote monitoring and control capabilities. 

ARCPL Connector: The ARCPL connector establishes input/output (I/O) connections between the DLAN (Distributed Local Area Network) and ARCNET signals and the Card. This connector allows for the transmission of signals related to DLAN and ARCNET protocols, enabling communication with other devices or systems utilizing these protocols. It provides connectivity options for specific network configurations or protocols employed in the system. KPPL Connector: The KPPL connector facilitates input/output (I/O) connections between the Programmer Module keypad and the Card. It enables the exchange of data and signals between the card and the Programmer Module keypad. This connector allows the user to input commands, configurations, or other instructions through the keypad, which are then processed and executed. 

 Board Mounting Features four standoffs that serve as mounting points. Standoffs are small supports or spacers that elevate and secure the board in a fixed position. These standoffs provide stability and ensure proper alignment between the module and the surrounding components or enclosure. Includes a connector labeled KPPL, which is designed to accept a programmer module plug. The programmer module plug is a specific type of connector that allows for communication and interaction. When the programmer module plug is connected to the KPPL connector, it establishes a physical and electrical connection between the LAN Card and the programmer module. Covered by the keypad and cover module. 

This module is specifically designed to provide a protective enclosure and to house the keypad interface. The keypad allows users to input commands, configurations, or other instructions, facilitating control and interaction with the module. The cover module is shielded from external elements and provides a secure housing for the keypad and other components. Application Data Includes configurable hardware that must be set correctly for the application: Berg-type Hardware Jumpers: The configurable hardware includes Berg-type hardware jumpers, which are identifiable by the JP nomenclature. These jumpers are physical connectors that can be manually adjusted or moved to establish or break connections on the device. 

The JP nomenclature provides a standardized way of labeling and identifying these jumpers. Wire Jumpers: In addition to the hardware jumpers, the device also utilizes wire jumpers, which are identified by the WJ nomenclature. Wire jumpers consist of physical wires that are used to create connections between specific points on the device. Similar to hardware jumpers, wire jumpers offer flexibility in configuring the device's circuitry. Software The LAN Control Processor (LCP) software contained in EPROMs U6 and U7 cannot be configured in the field. The EPROMs U6 and U7 can be replaced and moved from one board to another. 

When ordering replacement boards. The EPROMs from the old board must be transferred to the new board. When replacing an SLCC (or LCC) and the EPROMs are required, specify it to ensure that both EPROMs are included. The use of software-implemented fault tolerance (SIFT) technology in the Mark V TMR control system. Based on separate inputs, each control processor in a TMR control panel determines its own control and protection functions. 

The control processors vote on the inputs used to make these decisions individually. If one control processor fails to correctly read an input, the erroneous value is out-voted. Software Design The exciter application program is made up of useful software modules that work together as building blocks to meet system demands. Variables are kept in random-access memory (RAM), whereas block definitions and configuration information are saved in read-only memory (ROM) (RAM). The code is executed by microcontrollers. Traditional analog controls are simulated by the exciter application program. The program makes use of an open architecture system and a library of pre-existing building blocks. Each block serves a specific purpose, such as signal level detectors, function generators, proportional integral (PI) regulators, AND gates, and function generators. 

 Time synchronization Time synchronization allows for the accurate synchronization of all Mark V control panels on the Stagelink with a global time source (GTS), such as an IRIG-B time code signal or periodic pulse inputs. This enables the GTS to set the time clocks of all computers with operator interfaces. The rest of the plant's equipment, including the DCSs, should be synchronized to this common GTS. Power Requirements The Mark V panel can accept power from a variety of sources. Before entering the Mark V panel, each power input source (dc and two alternating current sources) should be fed through its own external 30 A 2 pole thermal magnetic circuit breaker. A 125 V dc source and/or up to two 120/240 V ac sources can be used as power sources. 

Each core in the panel has its own power supply board, which is powered by a 125 V dc panel distribution bus. Characteristics Critical Communication: Turbine control systems require highly reliable and low-latency communication to ensure the safe and efficient operation of the turbine. LAN Communications Cards are specifically engineered to meet these stringent communication requirements. Redundancy: Redundancy is often a critical feature in turbine control systems to ensure continued operation even in the event of hardware failures. LAN Communications Cards may support features like dual NICs (Network Interface Cards) or redundant network paths to enhance system reliability. 

Industrial-Grade: Turbine control environments can be harsh, with factors like temperature variations, vibrations, and electromagnetic interference. LAN Communications Cards used in such systems are typically built to withstand these harsh conditions and are designed to be rugged and durable. Protocol Support: Turbine control systems may use specific communication protocols or standards. LAN Communications Cards are designed to support these protocols, ensuring seamless integration with the control system and other devices on the network. Security: Security is a paramount concern in critical systems like turbine control. These cards may include security features such as hardware encryption, firewall capabilities, and support for secure communication protocols to protect against unauthorized access or tampering. 

Monitoring and Diagnostics: Advanced LAN Communications Cards for turbine control systems often include diagnostic and monitoring features. These features allow for real-time monitoring of network performance and card health, aiding in the early detection of issues. Integration with SCADA Systems: Turbine control systems are often part of larger Supervisory Control and Data Acquisition (SCADA) systems. LAN Communications Cards facilitate the seamless integration of turbine data into the SCADA network, allowing for centralized monitoring and control.

  • User name Member Level Quantity Specification Purchase Date
  • Satisfaction :
No evaluation information
  • Foxboro FBM224 Modbus ® communication module
  • Foxboro Evo ™ Compact 200 Series I/O Subsystem
  • Foxboro ™ DCS Compact FBM201 Analog Input Interface Module
  • SIEMENS SGT-2000E series gas turbine
  • SIEMENS SIMATIC HMI Intelligent Panel
  • SIEMENS SIMATIC HMI Intelligent Panel Operation Instructions
  • SIEMENS SIMATIC S7 300/400 operates MICROMASTER 4 (MM4) frequency converter through Profibus DP
  • SIEMENS SIMATIC HMI Basic Panels Operating Manual
  • SIEMENS SINAMICS G120 Control Unit CU240E
  • SIEMENS SINAMICS G130/G150 products
  • SIEMENS SINAMICS Low Voltage Inverter
  • SIEMENS Climatix ™ S400 STD HVAC Controller (POS646 Series)
  • SIEMENS 3AH3 vacuum circuit breaker
  • SIEMENS QFM31xx series air duct sensor
  • SIEMENS SIMOTICS SD 1LE7 series low-voltage motor (shaft height 71-315)
  • SIEMENS SIMOTICS L-1FN3 series linear motor
  • SIEMENS SITRANS P DS III series pressure transmitter
  • SIEMENS ICROMASTER 420 frequency converter
  • SIEMENS SIMOGEAR Gear Motor Products
  • SIEMENS 40.5kV 3AE8 Solid Sealed Series Vacuum Circuit Breaker
  • Selection and Application Guide for SIEMENS PL and ES Series Load Centers
  • SIEMENS SIMATIC Drive Controller System
  • SIEMENS SIMATIC S7-1500/ET 200MP Automation System
  • SINAMICS SIRIUS series switchgear
  • SIEMENS G120 CU240BE-2 frequency converter
  • SIEMENS 3AH3 series vacuum circuit breaker
  • SIEMENS 1PH7 series asynchronous motors for machine tools
  • SIEMENS SIMOTICS 1LE8 series low-volt​age high-power motor
  • SIEMENS SIMATIC S5 series PLC STEP 5 programming software
  • SIEMENS E50 series terminal power distribution products
  • SIEMENS SIMOTICS SD 1LE5 series low-voltage motor
  • SIEMENS SIMOTICS L-1FN3 Linear Motor Operating Instructions
  • SIEMENS VVF53./VXF53. series flange valves
  • SIEMENS SIMATIC S5 S5-115U Programmable Controller
  • SIEMENS SMART S7-200 Intelligent Programmable Controller
  • SIEMIENS MCCB Series Short Circuit Rating Guide
  • SIEMIENS SIPART PS2 (6DR5...) Electrical Positioner Operation Guide
  • SIEMIENS SIMATIC TP170B Touch Screen
  • SIEMENS SIMATIC TI545/TI555 Controller
  • SIEMIENS SIMATIC 505 Analog I/O Module
  • SIEMIENS S7-1200/1500 Controller TIA Portal Programming Guide
  • SIEMIENS PFT6 series weighing sensor
  • SIEMIENS 1FK6 series three-phase servo motor
  • Siemens medium voltage vacuum switch technology and components
  • TEKTRONIX CFG 253 Function Generator
  • TEKTRONIX P6022 Current Probe
  • Tektronix AWG70000 series arbitrary waveform generator
  • Tektronix AWG2021 250 MHz Arbitrary Waveform Generator
  • Tektronix DMM4050 6 half bit high-precision digital multimeter
  • Tektronix 370B Programmable Curve Tracer
  • TEKTRONIX TCPA300/400 current probe amplifier
  • Tektronix AFG1022 Function Generator
  • Tektronix P6139A 10X Passive Probe
  • Tektronix 3 Series Hybrid Domain Oscilloscope
  • TEKTRONIX AFG31000 series arbitrary function generator
  • TEKTRONIX THDP0100/0200 and TMDP0200 series high-voltage differential probes
  • TEKTRONIX 3 Series Mixed Domain Oscilloscope MDO32 and MDO34
  • Tektronix 2440 digital oscilloscope
  • Tektronix MSO4000/DPO4000 series digital fluorescence oscilloscope
  • Tektronix TPS2000 series digital storage oscilloscope
  • Tektronix TBS1000B and TBS1000B-EDU series digital storage oscilloscopes
  • Tektronix XYZs of Oscilloscopes
  • TEKTRONIX 4K/UHD Monitoring and Measurement Guidelines
  • Tektronix 5 Series Mixed Signal Oscilloscope (MSO54/56/58)
  • Tektronix TDS3000 series digital fluorescence oscilloscope
  • TEKTRONIX MSO5000B, DPO5000B series mixed signal oscilloscope
  • Tektronix TBS1000 series digital storage oscilloscope
  • Tektronix 4000 series oscilloscope
  • TEKTRONIX VX4240 VXIbus protocol waveform digitizer/analyzer module
  • GE PACSystems RSTi EP EPSCPE100 Programmable Controller
  • TEKTRONIX 5B12N Dual Time Base Plugin
  • TEKTRONIX 5A22N Differential Amplifier
  • Tektronix 5440 oscilloscope
  • TOSHIBA MULTIFUNCTIONAL DIGITAL SYSTEMS TopAccess Guide  
  • TOSHIBA e-STUDIO 7516AC Color Multifunctional Printer
  • TOSHIBA e-STUDIO 7516AC Series Color Multifunctional Printer
  • TOSHIBA CANVIO BASICS portable hard drive
  • TOSHIBA TOSBERT TM VF-nC1 Industrial Inverter
  • TOSHIBA TE2 series low-voltage digital solid-state soft starter
  • ABB Sace BSD series brushless servo drive
  • TOSHIBA VF-S15 frequency converter
  • TOSHIBA Color TV User Manual
  • TOSHIBA 2505AC, 3005AC, 3505AC series multifunctional laminating machines
  • TOSHIBA External and Internal Hard Drives
  • TOSHIBA 1600XPi Series UPS Installation and Operation
  • TOSHIBA TOSBERT S11 series frequency converter
  • Toshiba TOSBERT S7 series frequency converter
  • Toshiba Motors Low & Medium Voltage Product Offering
  • TOSHIBA VF-AS3 inverter RS485 communication function
  • TOSHIBA TOSBERT VF-A3 frequency converter
  • TOSHIBA V200 series programmable logic controller
  • TOSHIBA TOSBERT VF-S15 series frequency converter
  • TRICON ®/ Installation and maintenance of E/E2/E3 transmitters
  • TRLC0NEX Tricon fault-tolerant controller
  • WAGO 221 series LEVER-NUTS ® Compact splicing connector
  • WAGO-I/O-SYSTEM 750 Programmable Fieldbus Controller ETHERNET 
  • WAGO Rail-Mount Terminal Blocks with Screw and Stud Connection
  • WAGO series molded case circuit breaker (MCCB)
  • WAGO Rail-Mount Terminal Blocks
  • WAGO I/O System 750/753 Series Distributed Automation System
  • HIMA X-CPU 01 processor module
  • Westinghouse iGen5000 Digital Inverter Generator
  • Westinghouse WGen7500DF Dual Fuel Portable Generator
  • Westinghouse WPX2700H/WPX3100H High Pressure Cleaning Machine
  • Westinghouse WH7500V portable generator
  • Westinghouse WGen9500c portable generator
  • Westinghouse DS/DSL series low-voltage power circuit breakers
  • Westinghouse ePX3500 Electric High Voltage Cleaning Machine
  • Westinghouse ST Switch Intelligent Automatic Portable Transfer Switch
  • Westinghouse 2400i digital inverter generator
  • Westinghouse iGen series digital inverter generator
  • HIMA CPU 01 Controller Module
  • Westinghouse WPX3000e/WPX3400e electric high-pressure cleaning machine
  • Westinghouse WGen2000, WGen3600, and WGen3600V portable generators
  • Westinghouse WGen5500 Generator
  • Westinghouse WGen20000 Generator
  • Westinghouse WPro8500 and WPro12000 portable generators
  • Westinghouse iGen4500DFc Dual Fuel Digital Variable Frequency Generator
  • Watlow Series L Temperature Limiting Controller
  • Watlow Series F4P Temperature/Process Controller
  • Watlow EZ-ZONE ® RME (Expansion) Module
  • Watlow EZ-ZONE ® RMA (Access) module
  • Watlow PM PLUS ™ 6 Series PID Integrated Controller
  • Watlow Immersion Heater
  • Watlow F4T Controller Installation and Failure
  • Watlow DIN-A-MITE ® Style C Solid State Power Controller
  • Watlow plug-in heater
  • Watlow Series 942 Controller