Welcome to the Industrial Automation website!

NameDescriptionContent
HONG  KANG
E-mail  
Password  
  
Forgot password?
  Register
当前位置:
  • GE DS215SLCCG1AZZ01B LAN Communications Card
    ❤ Add to collection
  • GE DS215SLCCG1AZZ01B LAN Communications Card

    110V-380V
    1A-30A
    5W-130W
    1 year
    30
    United States, France, Japan, Viet Nam, Australia, Russia, Germany, Italy, Arabia

    GE DS215SLCCG1AZZ01B LAN Communications Card

    • ¥34000.00
      ¥34670.00
      ¥34000.00
      ¥34000.00
    • Satisfaction:

      Sales: 0

      Review: 0

    Weight:3.400KG
    • Quantity:
    • (Inventory: 33)
Description

GE DS215SLCCG1AZZ01B LAN Communications Card


GE DS215SLCCG1AZZ01B LAN Communications Card

Part Number DS215SLCCG1AZZ01B Manufacturer General Electric Country of Manufacture As Per GE Manufacturing Policy Series Mark VI/VIe Function Module Availability In StockDS215SLCCG1AZZ01B is a LAN Communications Card developed by GE. It is a part of Mark V control system. It has circuits for communications with the drive or exciter that are both isolated and non-isolated. The programmer module is connected to the 16-position alphanumeric display (and display controller, U18). The KPPL connector receives the programmer module, which is mounted to the SLCC. 

The LAN Control Processor, U1, is the main microprocessor (LCP). Two replaceable EPROMs contain the LCP software (U6 and U7). U8 and U9 supply the LCP-specific Memory. Communication between the LCP and the Drive Control Processor (DCP) on the Drive Control Card occurs via 3PL and dual-ported RAM (U5). Dual-ported RAM [DPR] is RAM set up as memory arrays that two microprocessors may access both independently and concurrently. Mark V improves unit reliability even further by employing three redundant control processors. This triple modular redundant (TMR) design can safely operate, control, and protect a unit in the event that one of its control processors or control processor components fails. 

The TMR design allows for the shutdown and repair of a single control processor without shutting down the turbine. Board Connections Five connectors (marked _PL) connect to the other controller boards, external signals, and the network. These are the connectors to other boards: 2PL Connector: This connector is responsible for connecting 脗卤5, 15, and 24 V dc input/output (I/O) signals between various components. The Power Supply/Interface Board (IMCP, DCI, SDCI, or DCFB), the Drive Terminal Board or Simple Drive Terminal Board, and the Drive Control Card establish connections using this connector. It enables the exchange of power and I/O signals required for communication and coordination between these boards. 

3PL Connector: The 3PL connector is used to connect the inputs from the Drive Control Card. It allows the Drive Control Card to transmit input signals to the SLCC, enabling communication and coordination between these two components. It relies on these inputs to perform its control functions effectively. 10PL Connector: This connector serves as the interface for input/output (I/O) signals between the LAN I/O Terminal Board and the Card. It enables communication between the LAN card and the LAN I/O Terminal Board, facilitating the exchange of data and signals over the network. This connector plays a vital role in integrating the LAN Card into the networked system and allows for remote monitoring and control capabilities. 

ARCPL Connector: The ARCPL connector establishes input/output (I/O) connections between the DLAN (Distributed Local Area Network) and ARCNET signals and the Card. This connector allows for the transmission of signals related to DLAN and ARCNET protocols, enabling communication with other devices or systems utilizing these protocols. It provides connectivity options for specific network configurations or protocols employed in the system. KPPL Connector: The KPPL connector facilitates input/output (I/O) connections between the Programmer Module keypad and the Card. It enables the exchange of data and signals between the card and the Programmer Module keypad. This connector allows the user to input commands, configurations, or other instructions through the keypad, which are then processed and executed. 

 Board Mounting Features four standoffs that serve as mounting points. Standoffs are small supports or spacers that elevate and secure the board in a fixed position. These standoffs provide stability and ensure proper alignment between the module and the surrounding components or enclosure. Includes a connector labeled KPPL, which is designed to accept a programmer module plug. The programmer module plug is a specific type of connector that allows for communication and interaction. When the programmer module plug is connected to the KPPL connector, it establishes a physical and electrical connection between the LAN Card and the programmer module. Covered by the keypad and cover module. 

This module is specifically designed to provide a protective enclosure and to house the keypad interface. The keypad allows users to input commands, configurations, or other instructions, facilitating control and interaction with the module. The cover module is shielded from external elements and provides a secure housing for the keypad and other components. Application Data Includes configurable hardware that must be set correctly for the application: Berg-type Hardware Jumpers: The configurable hardware includes Berg-type hardware jumpers, which are identifiable by the JP nomenclature. These jumpers are physical connectors that can be manually adjusted or moved to establish or break connections on the device. 

The JP nomenclature provides a standardized way of labeling and identifying these jumpers. Wire Jumpers: In addition to the hardware jumpers, the device also utilizes wire jumpers, which are identified by the WJ nomenclature. Wire jumpers consist of physical wires that are used to create connections between specific points on the device. Similar to hardware jumpers, wire jumpers offer flexibility in configuring the device's circuitry. Software The LAN Control Processor (LCP) software contained in EPROMs U6 and U7 cannot be configured in the field. The EPROMs U6 and U7 can be replaced and moved from one board to another. 

When ordering replacement boards. The EPROMs from the old board must be transferred to the new board. When replacing an SLCC (or LCC) and the EPROMs are required, specify it to ensure that both EPROMs are included. The use of software-implemented fault tolerance (SIFT) technology in the Mark V TMR control system. Based on separate inputs, each control processor in a TMR control panel determines its own control and protection functions. 

The control processors vote on the inputs used to make these decisions individually. If one control processor fails to correctly read an input, the erroneous value is out-voted. Software Design The exciter application program is made up of useful software modules that work together as building blocks to meet system demands. Variables are kept in random-access memory (RAM), whereas block definitions and configuration information are saved in read-only memory (ROM) (RAM). The code is executed by microcontrollers. Traditional analog controls are simulated by the exciter application program. The program makes use of an open architecture system and a library of pre-existing building blocks. Each block serves a specific purpose, such as signal level detectors, function generators, proportional integral (PI) regulators, AND gates, and function generators. 

 Time synchronization Time synchronization allows for the accurate synchronization of all Mark V control panels on the Stagelink with a global time source (GTS), such as an IRIG-B time code signal or periodic pulse inputs. This enables the GTS to set the time clocks of all computers with operator interfaces. The rest of the plant's equipment, including the DCSs, should be synchronized to this common GTS. Power Requirements The Mark V panel can accept power from a variety of sources. Before entering the Mark V panel, each power input source (dc and two alternating current sources) should be fed through its own external 30 A 2 pole thermal magnetic circuit breaker. A 125 V dc source and/or up to two 120/240 V ac sources can be used as power sources. 

Each core in the panel has its own power supply board, which is powered by a 125 V dc panel distribution bus. Characteristics Critical Communication: Turbine control systems require highly reliable and low-latency communication to ensure the safe and efficient operation of the turbine. LAN Communications Cards are specifically engineered to meet these stringent communication requirements. Redundancy: Redundancy is often a critical feature in turbine control systems to ensure continued operation even in the event of hardware failures. LAN Communications Cards may support features like dual NICs (Network Interface Cards) or redundant network paths to enhance system reliability. 

Industrial-Grade: Turbine control environments can be harsh, with factors like temperature variations, vibrations, and electromagnetic interference. LAN Communications Cards used in such systems are typically built to withstand these harsh conditions and are designed to be rugged and durable. Protocol Support: Turbine control systems may use specific communication protocols or standards. LAN Communications Cards are designed to support these protocols, ensuring seamless integration with the control system and other devices on the network. Security: Security is a paramount concern in critical systems like turbine control. These cards may include security features such as hardware encryption, firewall capabilities, and support for secure communication protocols to protect against unauthorized access or tampering. 

Monitoring and Diagnostics: Advanced LAN Communications Cards for turbine control systems often include diagnostic and monitoring features. These features allow for real-time monitoring of network performance and card health, aiding in the early detection of issues. Integration with SCADA Systems: Turbine control systems are often part of larger Supervisory Control and Data Acquisition (SCADA) systems. LAN Communications Cards facilitate the seamless integration of turbine data into the SCADA network, allowing for centralized monitoring and control.

  • User name Member Level Quantity Specification Purchase Date
  • Satisfaction :
No evaluation information
  • Emerson FloBoss ™ S600+ Flow Computer
  • ABB 3BHE02195R0124 excitation control unit
  • ABB 07DC91C Digital I/O Module
  • ABB 3BHE003855R001 UNS2882A excitation control unit module
  • ABB 3BHE014967R0002 UNS 2880B-P,V2: COB PCB Assembled
  • ABB 3BSE050091R20 Tension Electronics PFEA112-20
  • ABB 3BSE020520R1 CI810B AF 100 Fieldbus Comm. Interface
  • ABB HIEE45116R0001 FM9925A-E High Voltage Control Board
  • ABB ASE2UDC920AE01 Digital Controller Module
  • ABB PPC380AE102 high-performance industrial controller
  • ABB PPC380AE02 high-performance control module
  • ABB NU8976A99 HIER46665R0099 NU8976A Controller Module
  • ABB 3BSE017235R1 PXAH 401 Operator unit
  • ABB 3BSE018877R2 PFSK 152 Connects DSP-UP (PLD 1.0/1)
  • ABB 57160001-GF DSDP 150 Pulse Encoder Input Unit 
  • Triconex CM3201S2 Communication Module
  • ABB 3BHE05594R0002 GBU72 power grid circuit breaker unit
  • ABB 5SHY 4045L0006 IGCT 4500V 91MM 3BHB030310R0001
  • Xycom 9403, Xycom 9450 CRT LCD Upgrade Kit with Cable Kit
  • Xycom 5019T-SER Operator Interface Screen Monitor
  • XYCOM 1547 Heavy-Duty Industrial PC without Integrated Display
  • ABB BCU-02/12/22 Control Unit Hardware
  • ABB REF615 Feeder Protection and Control
  • ABB 615 series ANSI protection and control
  • ABB M063B High Frequency Industrial Controller
  • ABB IMDS003 digital output slave module
  • ABB 5SHX08F4502 IGCT thyristor module
  • ABB RMIO-12C control unit
  • ABB XO08R1-B4.0 Extended Output Module
  • ABB 5SGX1060H0003 AC contactor
  • ABB REG216/REG216 Classic digital generator protection
  • ABB VA-MC15-05 Controller Module
  • ABB VA-3180-10 Variable Speed Drive
  • ABB 72395-4-039123 excitation system power module
  • ALSTOM NRD108031 TRVC070999000 BOTTOM high-speed counting module
  • ALSTOM CMU 42015-115-00 Control Module
  • GE P40 Agile Series Intelligent Electronic Devices (IEDs)
  • ABB EasyLine series gas analyzer EL3020, EL3040
  • ABB 83SR04 module
  • ABB 216EA61b High Performance Industrial Control Module
  • ABB MB510 Program Card Interface
  • ABB LDGRB-01 3BSE013177R1 Stand-alone resolution module
  • ABB ACH550-01 frequency converter
  • ABB DTDX991A 61430001-UW servo controller
  • ABB 300 series NEMA rated full voltage controller
  • ABB DTCC901B High Performance Digital Temperature Controller
  • ABB 5SHX14H4502 Controller
  • ABB 3BSE013064R1 PU516 Engineering Board -PCI
  • ABB 5SHX10H6004 Control Signal Processing Module
  • ABB PPE091A101 medium voltage frequency converter
  • ABB CONTROL UNIT SYN 5201A-Z,V277 3BHB006714R0277
  • ABB 3BSE017235R1 PXAH 401 Operator unit
  • ABB Plantguard Safety Instrumented System
  • ABB AC 800M 6.0 Controller Hardware
  • ABB Panel 800 Version 6 Series Operator Panel
  • ABB System proS series enclosed starter
  • ABB Tmax T7 series molded case circuit breaker
  • ABB UK 500 series household distribution box
  • ABB contactors and overload relays
  • ABB NTAC-0x pulse encoder interface module
  • ABB electronic timer CT-APS.22
  • ABB Small, compact Thermostat KTO 011 / KTS 011
  • ABB medium voltage frequency converter ACS2000 4kV frame 1, 2, 3 spare parts
  • ABB low-voltage AF contactor AF400... AF460
  • ABB KPM Sheet Break Detector - KB2
  • ABB TP854 base plate
  • ABB AO845A Analog Output Module
  • ABB FS450R12KE3+AGDR-71C Integrated Circuit
  • ABB PNI800K01 Ability ™ Symphony ® Plus Hardware Selector
  • ABB REA 101 arc protection relay
  • ABB 3BSC950193R1 TB850 CEX-Bus Terminator
  • ABB BC810K02 Compact Product Kit Hardware
  • ABB 3BSC750262R1 (TK851V010) connection cable
  • ABB DI810 digital input module
  • ABB Harmony Sequence of Events (SOE) system
  • ABB Tension Electronics PFEA111/112
  • ABB AI801 Analog Input Module
  • ABB AF C094 AE02 ARCnet Control Board
  • ABB TP830-1 PLC module
  • ​ABB CP430 Human Machine Interface (HMI) Installation and Operation
  • ABB 81EU01-E/R3210 Analog Signal Input Module
  • ABB Panel 800- PP836 5.1 Hardware and Installation
  • ABB PM866AK01 Controller
  • ABB TK850V007 CEX Bus expansion cable Installation and configuration method
  • ABB AO801 Analog Output Module
  • ABB CI855 communication interface
  • ABB REF615R feeder protection and control
  • ABB EL3020 Model EasyLine Continuous Gas Analyzers
  • MOLEX SST-PB3-VME-1 and SST-PB3-VME-2 Hardware Reference Guide
  • Eaton XVH300 MICRO PANEL
  • Eaton XV-303/XV-313 multi touch display
  • ABB PP877 3BSE069272R2 Operator Panel
  • ABB 1SVR011718R2500 Analog Signal Converter
  • ABB BC810K02 CEX Bus Interconnection Unit Kit
  • ABB RELION ® 615 series REU615 voltage protection and control relay
  • ABB Symphony Harmony/INFI 90 DCS Remote I/O Module Upgrade Kit
  • ABB REM610C55HCNN02 motor protection relay
  • ABB TU810V1 Compact Terminal Unit
  • ABB REF 541, REF 543, and REF 545 feeder terminals
  • ABB UNITOL 1000 series automatic voltage regulator
  • ABB PCD235C101 3BHE057901R0101 AC800pec Excitation High Performance Control System
  • ABB GFD233 3BHE022294R0102 Redundant System Control Module
  • Galil DMC-40x0 series motion controller
  • ABB AO2040-CU Ex Central Unit
  • ABB REF615 feeder protection relay
  • ABB INSUMMCU2 MCU2A02V24 motor control unit
  • ABB REF 542plus multifunctional protection and switchgear control unit
  • ABB PP886 Compact Product Suite hardware selector
  • ABB AC500 V3 PLC Enhanced connectivity and performance
  • ABB SYNCHROTACT ® 5 Synchronous and Parallel Devices
  • ABB SUE 3000 high-speed switching device
  • ABB REF542plus multifunctional protection and switchgear control unit
  • ABB Relion ® 615 series REF615 feeder protection and control device
  • Bentley 3500/45 Position Monitor
  • Bentley 3500/42 Proximitors ®/ Earthquake monitoring module
  • ABB molded case circuit breaker
  • ABB MVME162 Embedded Controller
  • ABB TU810V1 System 800xA hardware selector
  • ABB SPAJ 140 C overcurrent and ground fault relay
  • ABB AC 800PEC High Performance Control System
  • ABB REF601 and REJ601 relays
  • ALSTOM RPH3/PS125b Controlled Switching Device,CT1VT220/TCR
  • ABB V-Contact VSC Medium voltage vacuum contactors
  • ABB 3BHE004385R0001 UNS 0884a, V1:Current Sensor 2000A
  • ABB Symphony Plus system IOR810 S800 I/O gateway
  • ABB Universal Performance Motor
  • ABB Electromagnetic Flowmeters ProcessMaster FEP300/FEP500 and HygienicMaster FEH300/FEH500
  • ABB Symphony Plus System SD Series PROFINET Interface Module PDP800